IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57241-7.html
   My bibliography  Save this article

Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity

Author

Listed:
  • Liora S. Katz

    (Icahn School of Medicine at Mount Sinai)

  • Emira J. Visser

    (Eindhoven University of Technology)

  • Kathrin F. Plitzko

    (University of Duisburg-Essen)

  • Marloes A. M. Pennings

    (Eindhoven University of Technology)

  • Peter J. Cossar

    (Eindhoven University of Technology)

  • Isabelle L. Tse

    (Icahn School of Medicine at Mount Sinai)

  • Markus Kaiser

    (University of Duisburg-Essen)

  • Luc Brunsveld

    (Eindhoven University of Technology)

  • Christian Ottmann

    (Eindhoven University of Technology)

  • Donald K. Scott

    (Icahn School of Medicine at Mount Sinai)

Abstract

The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) with two major splice isoforms (α and β). In chronic hyperglycemia and glucolipotoxicity, ChREBPα-mediated ChREBPβ expression surges, leading to insulin-secreting β-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in cytoplasmic retention and suppression of transcriptional activity. Thus, small molecule-mediated stabilization of this protein-protein interaction (PPI) may be of therapeutic value. Here, we show that structure-based optimizations of a ‘molecular glue’ compound led to potent ChREBPα/14-3-3 PPI stabilizers with cellular activity. In primary human β-cells, the most active compound retained ChREBPα in the cytoplasm, and efficiently protected β-cells from glucolipotoxicity while maintaining β-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative ‘molecular glue’ approach for achieving small molecule control of notoriously difficult to target TFs.

Suggested Citation

  • Liora S. Katz & Emira J. Visser & Kathrin F. Plitzko & Marloes A. M. Pennings & Peter J. Cossar & Isabelle L. Tse & Markus Kaiser & Luc Brunsveld & Christian Ottmann & Donald K. Scott, 2025. "Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57241-7
    DOI: 10.1038/s41467-025-57241-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57241-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57241-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark A. Herman & Odile D. Peroni & Jorge Villoria & Michael R. Schön & Nada A. Abumrad & Matthias Blüher & Samuel Klein & Barbara B. Kahn, 2012. "A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism," Nature, Nature, vol. 484(7394), pages 333-338, April.
    2. Eunyoung Park & Shaun Rawson & Kunhua Li & Byeong-Won Kim & Scott B. Ficarro & Gonzalo Gonzalez-Del Pino & Humayun Sharif & Jarrod A. Marto & Hyesung Jeon & Michael J. Eck, 2019. "Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes," Nature, Nature, vol. 575(7783), pages 545-550, November.
    3. Huan Wang & Aaron Bender & Peng Wang & Esra Karakose & William B. Inabnet & Steven K. Libutti & Andrew Arnold & Luca Lambertini & Micheal Stang & Herbert Chen & Yumi Kasai & Milind Mahajan & Yayoi Kin, 2017. "Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    4. Eline Sijbesma & Emira Visser & Kathrin Plitzko & Philipp Thiel & Lech-Gustav Milroy & Markus Kaiser & Luc Brunsveld & Christian Ottmann, 2020. "Structure-based evolution of a promiscuous inhibitor to a selective stabilizer of protein–protein interactions," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liora S. Katz & Gabriel Brill & Pili Zhang & Anil Kumar & Sharon Baumel-Alterzon & Lee B. Honig & Nicolás Gómez-Banoy & Esra Karakose & Marius Tanase & Ludivine Doridot & Alexandra Alvarsson & Bennett, 2022. "Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Shuai Yan & Anna Santoro & Micah J. Niphakis & Antonio M. Pinto & Christopher L. Jacobs & Rasheed Ahmad & Radu M. Suciu & Bryan R. Fonslow & Rachel A. Herbst-Graham & Nhi Ngo & Cassandra L. Henry & Dy, 2024. "Inflammation causes insulin resistance in mice via interferon regulatory factor 3 (IRF3)-mediated reduction in FAHFA levels," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Alexander J. Hu & Wei Li & Calvin Dinh & Yongzhao Zhang & Jamie K. Hu & Stefano G. Daniele & Xiaoli Hou & Zixuan Yang & John M. Asara & Guo-fu Hu & Stephen R. Farmer & Miaofen G. Hu, 2024. "CDK6 inhibits de novo lipogenesis in white adipose tissues but not in the liver," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Aleksandra Levina & Kaelin D. Fleming & John E. Burke & Thomas A. Leonard, 2022. "Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Matthew T. Dickerson & Prasanna K. Dadi & Karolina E. Zaborska & Arya Y. Nakhe & Charles M. Schaub & Jordyn R. Dobson & Nicole M. Wright & Joshua C. Lynch & Claire F. Scott & Logan D. Robinson & David, 2022. "Gi/o protein-coupled receptor inhibition of beta-cell electrical excitability and insulin secretion depends on Na+/K+ ATPase activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Jasmeen Oberoi & Xavi Aran Guiu & Emily A. Outwin & Pascale Schellenberger & Theodoros I. Roumeliotis & Jyoti S. Choudhary & Laurence H. Pearl, 2022. "HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Michael J. Roy & Minglyanna G. Surudoi & Ashleigh Kropp & Jianmei Hou & Weiwen Dai & Joshua M. Hardy & Lung-Yu Liang & Thomas R. Cotton & Bernhard C. Lechtenberg & Toby A. Dite & Xiuquan Ma & Roger J., 2023. "Structural mapping of PEAK pseudokinase interactions identifies 14-3-3 as a molecular switch for PEAK3 signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Emmanuel Benichou & Bolaji Seffou & Selin Topçu & Ophélie Renoult & Véronique Lenoir & Julien Planchais & Caroline Bonner & Catherine Postic & Carina Prip-Buus & Claire Pecqueur & Sandra Guilmeau & Ma, 2024. "The transcription factor ChREBP Orchestrates liver carcinogenesis by coordinating the PI3K/AKT signaling and cancer metabolism," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    9. Eunyoung Park & Shaun Rawson & Anna Schmoker & Byeong-Won Kim & Sehee Oh & Kangkang Song & Hyesung Jeon & Michael J. Eck, 2023. "Cryo-EM structure of a RAS/RAF recruitment complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57241-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.