IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57104-1.html
   My bibliography  Save this article

Reply to: Do actin isoforms have unique functionalities at the protein level?

Author

Listed:
  • Andrew Wilde

    (University of Toronto
    University of Toronto)

Abstract

No abstract is available for this item.

Suggested Citation

  • Andrew Wilde, 2025. "Reply to: Do actin isoforms have unique functionalities at the protein level?," Nature Communications, Nature, vol. 16(1), pages 1-2, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57104-1
    DOI: 10.1038/s41467-025-57104-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57104-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57104-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anan Chen & Luisa Ulloa Severino & Thomas C. Panagiotou & Trevor F. Moraes & Darren A. Yuen & Brigitte D. Lavoie & Andrew Wilde, 2021. "Inhibition of polar actin assembly by astral microtubules is required for cytokinesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryota Sakamoto & Michael P. Murrell, 2024. "Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Christina Rou Hsu & Gaganpreet Sangha & Wayne Fan & Joey Zheng & Kenji Sugioka, 2023. "Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57104-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.