IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57006-2.html
   My bibliography  Save this article

Molecular basis of foreign DNA recognition by BREX anti-phage immunity system

Author

Listed:
  • Alena Drobiazko

    (Skolkovo Institute of Science and Technology)

  • Myfanwy C. Adams

    (John Innes Centre)

  • Mikhail Skutel

    (Skolkovo Institute of Science and Technology)

  • Kristina Potekhina

    (Skolkovo Institute of Science and Technology)

  • Oksana Kotovskaya

    (Skolkovo Institute of Science and Technology)

  • Anna Trofimova

    (Skolkovo Institute of Science and Technology
    Russian Academy of Sciences)

  • Mikhail Matlashov

    (Skolkovo Institute of Science and Technology)

  • Daria Yatselenko

    (Skolkovo Institute of Science and Technology)

  • Karen L. Maxwell

    (University of Toronto)

  • Tim R. Blower

    (Durham University)

  • Konstantin Severinov

    (Russian Academy of Sciences
    Waksman Institute of Microbiology)

  • Dmitry Ghilarov

    (John Innes Centre)

  • Artem Isaev

    (Skolkovo Institute of Science and Technology)

Abstract

Anti-phage systems of the BREX (BacteRiophage EXclusion) superfamily rely on site-specific epigenetic DNA methylation to discriminate between the host and invading DNA. We demonstrate that in Type I BREX systems, defense and methylation require BREX site DNA binding by the BrxX (PglX) methyltransferase employing S-adenosyl methionine as a cofactor. We determined 2.2-Å cryoEM structure of Escherichia coli BrxX bound to target dsDNA revealing molecular details of BREX DNA recognition. Structure-guided engineering of BrxX expands its DNA specificity and dramatically enhances phage defense. We show that BrxX alone does not methylate DNA, and BREX activity requires an assembly of a supramolecular BrxBCXZ immune complex. Finally, we present a cryoEM structure of BrxX bound to a phage-encoded inhibitor Ocr that sequesters BrxX in an inactive dimeric form. We propose that BrxX-mediated foreign DNA sensing is a necessary first step in activation of BREX defense.

Suggested Citation

  • Alena Drobiazko & Myfanwy C. Adams & Mikhail Skutel & Kristina Potekhina & Oksana Kotovskaya & Anna Trofimova & Mikhail Matlashov & Daria Yatselenko & Karen L. Maxwell & Tim R. Blower & Konstantin Sev, 2025. "Molecular basis of foreign DNA recognition by BREX anti-phage immunity system," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57006-2
    DOI: 10.1038/s41467-025-57006-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57006-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57006-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jordi Frigola & Dirk Remus & Amina Mehanna & John F. X. Diffley, 2013. "ATPase-dependent quality control of DNA replication origin licensing," Nature, Nature, vol. 495(7441), pages 339-343, March.
    2. Danielle Miller & Adi Stern & David Burstein, 2022. "Deciphering microbial gene function using natural language processing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Haiyan Gao & Xinqi Gong & Jinchuan Zhou & Yubing Zhang & Jinsong Duan & Yue Wei & Liuqing Chen & Zixin Deng & Jiawei Wang & Shi Chen & Geng Wu & Lianrong Wang, 2022. "Nicking mechanism underlying the DNA phosphorothioate-sensing antiphage defense by SspE," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Amar Deep & Qishan Liang & Eray Enustun & Joe Pogliano & Kevin D. Corbett, 2024. "Architecture and activation mechanism of the bacterial PARIS defence system," Nature, Nature, vol. 634(8033), pages 432-439, October.
    5. Richard Quintana-Feliciano & Jithesh Kottur & Mi Ni & Rikhia Ghosh & Leslie Salas-Estrada & Goran Ahlsen & Olga Rechkoblit & Lawrence Shapiro & Marta Filizola & Gang Fang & Aneel K. Aggarwal, 2024. "Burkholderia cenocepacia epigenetic regulator M.BceJIV simultaneously engages two DNA recognition sequences for methylation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Florian Tesson & Alexandre Hervé & Ernest Mordret & Marie Touchon & Camille d’Humières & Jean Cury & Aude Bernheim, 2022. "Systematic and quantitative view of the antiviral arsenal of prokaryotes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yogesh K. Gupta & Siu-Hong Chan & Shuang-yong Xu & Aneel K. Aggarwal, 2015. "Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Marten Schmidt & Ran Yang & Ashish Kumar & Olivia Hunker & Jan Seebacher & Franziska Bleichert, 2022. "A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Sheri Harari & Danielle Miller & Shay Fleishon & David Burstein & Adi Stern, 2024. "Using big sequencing data to identify chronic SARS-Coronavirus-2 infections," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Richard Quintana-Feliciano & Jithesh Kottur & Mi Ni & Rikhia Ghosh & Leslie Salas-Estrada & Goran Ahlsen & Olga Rechkoblit & Lawrence Shapiro & Marta Filizola & Gang Fang & Aneel K. Aggarwal, 2024. "Burkholderia cenocepacia epigenetic regulator M.BceJIV simultaneously engages two DNA recognition sequences for methylation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Dimitri Boeckaerts & Michiel Stock & Celia Ferriol-González & Jesús Oteo-Iglesias & Rafael Sanjuán & Pilar Domingo-Calap & Bernard Baets & Yves Briers, 2024. "Prediction of Klebsiella phage-host specificity at the strain level," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Rubén Barcia-Cruz & David Goudenège & Jorge A. Moura de Sousa & Damien Piel & Martial Marbouty & Eduardo P. C. Rocha & Frédérique Roux, 2024. "Phage-inducible chromosomal minimalist islands (PICMIs), a novel family of small marine satellites of virulent phages," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Danielle Miller & Adi Stern & David Burstein, 2022. "Deciphering microbial gene function using natural language processing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Daniel Ramírez Montero & Humberto Sánchez & Edo Veen & Theo Laar & Belén Solano & John F. X. Diffley & Nynke H. Dekker, 2023. "Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Pedro Leão & Mary E. Little & Kathryn E. Appler & Daphne Sahaya & Emily Aguilar-Pine & Kathryn Currie & Ilya J. Finkelstein & Valerie Anda & Brett J. Baker, 2024. "Asgard archaea defense systems and their roles in the origin of eukaryotic immunity," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Lingchen He & Laura Miguel-Romero & Jonasz B. Patkowski & Nasser Alqurainy & Eduardo P. C. Rocha & Tiago R. D. Costa & Alfred Fillol-Salom & José R. Penadés, 2024. "Tail assembly interference is a common strategy in bacterial antiviral defenses," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Tom J. Arrowsmith & Xibing Xu & Shangze Xu & Ben Usher & Peter Stokes & Megan Guest & Agnieszka K. Bronowska & Pierre Genevaux & Tim R. Blower, 2024. "Inducible auto-phosphorylation regulates a widespread family of nucleotidyltransferase toxins," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Carolien Bastiaanssen & Pilar Bobadilla Ugarte & Kijun Kim & Giada Finocchio & Yanlei Feng & Todd A. Anzelon & Stephan Köstlbacher & Daniel Tamarit & Thijs J. G. Ettema & Martin Jinek & Ian J. MacRae , 2024. "RNA-guided RNA silencing by an Asgard archaeal Argonaute," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Angelina Beavogui & Auriane Lacroix & Nicolas Wiart & Julie Poulain & Tom O. Delmont & Lucas Paoli & Patrick Wincker & Pedro H. Oliveira, 2024. "The defensome of complex bacterial communities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Shao-Ming Gao & Han-Lan Fei & Qi Li & Li-Ying Lan & Li-Nan Huang & Peng-Fei Fan, 2024. "Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Jan D. Brüwer & Chandni Sidhu & Yanlin Zhao & Andreas Eich & Leonard Rößler & Luis H. Orellana & Bernhard M. Fuchs, 2024. "Globally occurring pelagiphage infections create ribosome-deprived cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Motaher Hossain & Barbaros Aslan & Asma Hatoum-Aslan, 2024. "Tandem mobilization of anti-phage defenses alongside SCCmec elements in staphylococci," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Daniela Gjorgjevikj & Naveen Kumar & Bing Wang & Tarek Hilal & Nelly Said & Bernhard Loll & Irina Artsimovitch & Ranjan Sen & Markus C. Wahl, 2025. "The Psu protein of phage satellite P4 inhibits transcription termination factor ρ by forced hyper-oligomerization," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    17. Humberto Sánchez & Zhaowei Liu & Edo Veen & Theo Laar & John F. X. Diffley & Nynke H. Dekker, 2023. "A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Yiqun Wang & Yuqing Tian & Xu Yang & Feng Yu & Jianting Zheng, 2025. "Filamentation activates bacterial Avs5 antiviral protein," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    19. Jennifer N. Wells & Lucy V. Edwardes & Vera Leber & Shenaz Allyjaun & Matthew Peach & Joshua Tomkins & Antonia Kefala-Stavridi & Sarah V. Faull & Ricardo Aramayo & Carolina M. Pestana & Lepakshi Ranjh, 2025. "Reconstitution of human DNA licensing and the structural and functional analysis of key intermediates," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    20. Matthieu Haudiquet & Julie Bris & Amandine Nucci & Rémy A. Bonnin & Pilar Domingo-Calap & Eduardo P. C. Rocha & Olaya Rendueles, 2024. "Capsules and their traits shape phage susceptibility and plasmid conjugation efficiency," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57006-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.