IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56974-9.html
   My bibliography  Save this article

PIN1-SUMO2/3 motif suppresses excessive RNF168 chromatin accumulation and ubiquitin signaling to promote IR resistance

Author

Listed:
  • Anoop S. Chauhan

    (University of Birmingham
    School of University of Birmingham)

  • Matthew J. W. Mackintosh

    (University of Birmingham
    School of University of Birmingham
    University of Birmingham)

  • Joseph Cassar

    (School of University of Birmingham
    University of Birmingham)

  • Alexander J. Lanz

    (University of Birmingham
    School of University of Birmingham)

  • Mohammed Jamshad

    (University of Birmingham
    School of University of Birmingham)

  • Hannah L. Mackay

    (University of Birmingham
    School of University of Birmingham)

  • Alexander J. Garvin

    (University of Birmingham
    School of University of Birmingham
    University of Leeds)

  • Alexandra K. Walker

    (University of Birmingham
    School of University of Birmingham)

  • Satpal S. Jhujh

    (University of Birmingham
    School of University of Birmingham)

  • Teresa Carlomagno

    (School of University of Birmingham
    University of Birmingham)

  • Aneika C. Leney

    (School of University of Birmingham
    University of Birmingham)

  • Grant S. Stewart

    (University of Birmingham
    School of University of Birmingham)

  • Joanna R. Morris

    (University of Birmingham
    School of University of Birmingham)

Abstract

RNF168 is an E3 ubiquitin ligase critical to the mammalian DNA double-strand break repair response. The protein is recruited to and amplifies ubiquitin signals at damaged chromatin and, if not properly regulated, can drive an uncontrolled ubiquitin cascade potentially harmful to repair outcomes. Several indirect mechanisms restrict RNF168 positive feedback, and a longstanding question has been whether these alone suppress excessive RNF168 signaling or whether mechanisms to remove RNF168 from damaged chromatin exist. Here, we reveal a cascade of post-translational modifications which act at three adjacent amino acids, threonine-208, proline-209 and lysine-210, to process RNF168 actively. Phosphorylation at threonine-208 by CDK1/2 induces interaction with the peptidyl-prolyl isomerase PIN1. PIN1 promotes RNF168 SUMOylation at lysine-210, resulting in p97/VCP mediated removal. These actions promote RNF168 clearance and limit RNF168 chromatin build-up. Thus, single amino acid substitutions of the regulatory motif (SUMO-PIN1-assisted Chromatin Regulator, SPaCR) that restrict PIN1 interaction or SUMOylation are sufficient to drive supraphysiological accumulation of RNF168, increased ubiquitin signaling, excessive 53BP1 recruitment and radiosensitivity. Our findings define a mechanism of direct RNF168 regulation that is part of the normal damage response, promoting RNF168 dissociation from chromatin and limiting deleterious ubiquitin signaling.

Suggested Citation

  • Anoop S. Chauhan & Matthew J. W. Mackintosh & Joseph Cassar & Alexander J. Lanz & Mohammed Jamshad & Hannah L. Mackay & Alexander J. Garvin & Alexandra K. Walker & Satpal S. Jhujh & Teresa Carlomagno , 2025. "PIN1-SUMO2/3 motif suppresses excessive RNF168 chromatin accumulation and ubiquitin signaling to promote IR resistance," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56974-9
    DOI: 10.1038/s41467-025-56974-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56974-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56974-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jordan R. Becker & Gillian Clifford & Clara Bonnet & Anja Groth & Marcus D. Wilson & J. Ross Chapman, 2021. "BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination," Nature, Nature, vol. 596(7872), pages 433-437, August.
    2. Tomio S. Takahashi & Yoshihiro Hirade & Aya Toma & Yusuke Sato & Atsushi Yamagata & Sakurako Goto-Ito & Akiko Tomita & Shinichiro Nakada & Shuya Fukai, 2018. "Structural insights into two distinct binding modules for Lys63-linked polyubiquitin chains in RNF168," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Manuel Daza-Martin & Katarzyna Starowicz & Mohammed Jamshad & Stephanie Tye & George E. Ronson & Hannah L. MacKay & Anoop Singh Chauhan & Alexandra K. Walker & Helen R. Stone & James F. J. Beesley & J, 2019. "Isomerization of BRCA1–BARD1 promotes replication fork protection," Nature, Nature, vol. 571(7766), pages 521-527, July.
    4. Qi Hu & Maria Victoria Botuyan & Debiao Zhao & Gaofeng Cui & Elie Mer & Georges Mer, 2021. "Mechanisms of BRCA1–BARD1 nucleosome recognition and ubiquitylation," Nature, Nature, vol. 596(7872), pages 438-443, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George E. Ronson & Katarzyna Starowicz & Elizabeth J. Anthony & Ann Liza Piberger & Lucy C. Clarke & Alexander J. Garvin & Andrew D. Beggs & Celina M. Whalley & Matthew J. Edmonds & James F. J. Beesle, 2023. "Mechanisms of synthetic lethality between BRCA1/2 and 53BP1 deficiencies and DNA polymerase theta targeting," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Gaofeng Cui & Maria Victoria Botuyan & Pascal Drané & Qi Hu & Benoît Bragantini & James R. Thompson & David J. Schuller & Alexandre Detappe & Michael T. Perfetti & Lindsey I. James & Stephen V. Frye &, 2023. "An autoinhibited state of 53BP1 revealed by small molecule antagonists and protein engineering," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jian Ma & Yingke Zhou & Penglin Pan & Haixin Yu & Zixi Wang & Lei Lily Li & Bing Wang & Yuqian Yan & Yunqian Pan & Qi Ye & Tianjie Liu & Xiaoyu Feng & Shan Xu & Ke Wang & Xinyang Wang & Yanlin Jian & , 2023. "TRABID overexpression enables synthetic lethality to PARP inhibitor via prolonging 53BP1 retention at double-strand breaks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Youngho Kwon & Heike Rösner & Weixing Zhao & Platon Selemenakis & Zhuoling He & Ajinkya S. Kawale & Jeffrey N. Katz & Cody M. Rogers & Francisco E. Neal & Aida Badamchi Shabestari & Valdemaras Petrosi, 2023. "DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. John J. Krais & David J. Glass & Ilse Chudoba & Yifan Wang & Wanjuan Feng & Dennis Simpson & Pooja Patel & Zemin Liu & Ryan Neumann-Domer & Robert G. Betsch & Andrea J. Bernhardy & Alice M. Bradbury &, 2023. "Genetic separation of Brca1 functions reveal mutation-dependent Polθ vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Chao Yang & Zhenzhen Ma & Keshan Wang & Xingxiao Dong & Meiyu Huang & Yaqiu Li & Xiagu Zhu & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Qiuhong Zhu & Panpan Liang & Hao Meng & Fangzhen Li & Wei Miao & Cuiying Chu & Wei Wang & Dongxue Li & Cong Chen & Yu Shi & Xingjiang Yu & Yifang Ping & Chaoshi Niu & Hai-bo Wu & Aili Zhang & Xiu-wu B, 2024. "Stabilization of Pin1 by USP34 promotes Ubc9 isomerization and protein sumoylation in glioma stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Jessica L. Kelliher & Melissa L. Folkerts & Kaiyuan V. Shen & Wan Song & Kyle Tengler & Clara M. Stiefel & Seong-Ok Lee & Eloise Dray & Weixing Zhao & Brian Koss & Nicholas R. Pannunzio & Justin W. Le, 2024. "Evolved histone tail regulates 53BP1 recruitment at damaged chromatin," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Kim L. Luca & Pim M. J. Rullens & Magdalena A. Karpinska & Sandra S. Vries & Agnieszka Gacek-Matthews & Lőrinc S. Pongor & Gaëlle Legube & Joanna W. Jachowicz & A. Marieke Oudelaar & Jop Kind, 2024. "Genome-wide profiling of DNA repair proteins in single cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Aleksandra Skrajna & Tatyana Bodrug & Raquel C. Martinez-Chacin & Caleb B. Fisher & Kaeli A. Welsh & Holly C. Simmons & Eyla C. Arteaga & Jake M. Simmons & Mohamed A. Nasr & Kyle M. LaPak & Anh Nguyen, 2025. "APC/C-mediated ubiquitylation of extranucleosomal histone complexes lacking canonical degrons," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    12. Daniel Salas-Lloret & Néstor García-Rodríguez & Emily Soto-Hidalgo & Lourdes González-Vinceiro & Carmen Espejo-Serrano & Lisanne Giebel & María Luisa Mateos-Martín & Arnoud H. Ru & Peter A. Veelen & P, 2024. "BRCA1/BARD1 ubiquitinates PCNA in unperturbed conditions to promote continuous DNA synthesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56974-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.