IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56407-7.html
   My bibliography  Save this article

Cascaded immunotherapy with implantable dual-drug depots sequentially releasing STING agonists and apoptosis inducers

Author

Listed:
  • Kai Li

    (Sun Yat-sen University)

  • Xuan Yu

    (Sun Yat-sen University)

  • Yanteng Xu

    (Sun Yat-sen University)

  • Haixia Wang

    (Sun Yat-sen University)

  • Zheng Liu

    (Sun Yat-sen University)

  • Chong Wu

    (Xiamen University
    Sun Yat-sen University)

  • Xing Luo

    (Sun Yat-sen University)

  • Jiancheng Xu

    (Sun Yat-sen University)

  • Youqiang Fang

    (Sun Yat-sen University)

  • Enguo Ju

    (Sun Yat-sen University)

  • Shixian Lv

    (Peking University)

  • Hon Fai Chan

    (The Chinese University of Hong Kong)

  • Yeh-Hsing Lao

    (The State University of New York)

  • Weiling He

    (Xiamen University)

  • Yu Tao

    (Sun Yat-sen University)

  • Mingqiang Li

    (Sun Yat-sen University
    Guangdong Provincial Key Laboratory of Liver Disease Research
    Sun Yat-Sen University)

Abstract

Non-nucleotide stimulators of interferon gene (STING) agonists hold promise as immunotherapeutic agents for postsurgical adjuvant treatment of tumors. However, their limited effect duration hampers therapeutic effectiveness, necessitating prolonged administration of multiple doses that heightens infection risk and impacts patient compliance. Here, we develop an implantable dual-drug depot in a sandwich-like configuration, with a non-nucleotide STING agonist (MSA-2) in the outer layers of 3D-printed scaffolds and an immunogenic apoptosis inducer (doxorubicin, DOX) in the inner layer of electrospun fibers. We discover that MSA-2 can elicit endoplasmic reticulum stress-mediated and general immunogenic apoptosis of cancer cells. The stimulations with tumor-associated antigens and damage-associated molecular patterns from cancer cells, along with proinflammatory factors secreted by matured dendritic cells and M1-polarized macrophages, can depolymerize intracellular microtubules guiding activated STING trafficking towards lysosomes for degradation. Collectively, the dual-drug depots can initiate a long-lasting cascaded immunotherapy and chemotherapy, suppressing postsurgical tumor recurrence and metastasis.

Suggested Citation

  • Kai Li & Xuan Yu & Yanteng Xu & Haixia Wang & Zheng Liu & Chong Wu & Xing Luo & Jiancheng Xu & Youqiang Fang & Enguo Ju & Shixian Lv & Hon Fai Chan & Yeh-Hsing Lao & Weiling He & Yu Tao & Mingqiang Li, 2025. "Cascaded immunotherapy with implantable dual-drug depots sequentially releasing STING agonists and apoptosis inducers," Nature Communications, Nature, vol. 16(1), pages 1-26, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56407-7
    DOI: 10.1038/s41467-025-56407-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56407-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56407-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshi M. Ramanjulu & G. Scott Pesiridis & Jingsong Yang & Nestor Concha & Robert Singhaus & Shu-Yun Zhang & Jean-Luc Tran & Patrick Moore & Stephanie Lehmann & H. Christian Eberl & Marcel Muelbaier & , 2018. "Design of amidobenzimidazole STING receptor agonists with systemic activity," Nature, Nature, vol. 564(7736), pages 439-443, December.
    2. Keisuke Yamamoto & Anthony Venida & Julian Yano & Douglas E. Biancur & Miwako Kakiuchi & Suprit Gupta & Albert S. W. Sohn & Subhadip Mukhopadhyay & Elaine Y. Lin & Seth J. Parker & Robert S. Banh & Jo, 2020. "Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I," Nature, Nature, vol. 581(7806), pages 100-105, May.
    3. Jing Liu & Zhihao Zhao & Nasha Qiu & Quan Zhou & Guowei Wang & Haiping Jiang & Ying Piao & Zhuxian Zhou & Jianbin Tang & Youqing Shen, 2021. "Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Conggang Zhang & Guijun Shang & Xiang Gui & Xuewu Zhang & Xiao-chen Bai & Zhijian J. Chen, 2019. "Structural basis of STING binding with and phosphorylation by TBK1," Nature, Nature, vol. 567(7748), pages 394-398, March.
    5. Delphine Goubau & Martin Schlee & Safia Deddouche & Andrea J. Pruijssers & Thomas Zillinger & Marion Goldeck & Christine Schuberth & Annemarthe G. Van der Veen & Tsutomu Fujimura & Jan Rehwinkel & Jas, 2014. "Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates," Nature, Nature, vol. 514(7522), pages 372-375, October.
    6. Zhusheng Huang & Yuxiang Wang & Dan Yao & Jinhui Wu & Yiqiao Hu & Ahu Yuan, 2021. "Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    7. Tian-Chen Xiong & Ming-Cong Wei & Fang-Xu Li & Miao Shi & Hu Gan & Zhen Tang & Hong-Peng Dong & Tianzi Liuyu & Pu Gao & Bo Zhong & Zhi-Dong Zhang & Dandan Lin, 2022. "The E3 ubiquitin ligase ARIH1 promotes antiviral immunity and autoimmunity by inducing mono-ISGylation and oligomerization of cGAS," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anant Gharpure & Ariana Sulpizio & Johannes R. Loeffler & Monica L. Fernández-Quintero & Andy S. Tran & Luke L. Lairson & Andrew B. Ward, 2025. "Distinct oligomeric assemblies of STING induced by non-nucleotide agonists," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Zhen Lu & Jinyun Chen & Pengfei Yu & Matthew J. Atherton & Jun Gui & Vivek S. Tomar & Justin D. Middleton & Neil T. Sullivan & Sunil Singhal & Subin S. George & Ashley G. Woolfork & Aalim M. Weljie & , 2022. "Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Zhusheng Huang & Rong Gu & Shiqian Huang & Qian Chen & Jing Yan & Xiaoya Cui & Haojie Jiang & Dan Yao & Chuang Shen & Jiayue Su & Tao Liu & Jinhui Wu & Zhimin Luo & Yiqiao Hu & Ahu Yuan, 2024. "Chiral coordination polymer nanowires boost radiation-induced in situ tumor vaccination," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Sara Orehek & Taja Železnik Ramuta & Duško Lainšček & Špela Malenšek & Martin Šala & Mojca Benčina & Roman Jerala & Iva Hafner-Bratkovič, 2024. "Cytokine-armed pyroptosis induces antitumor immunity against diverse types of tumors," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Gaopeng Hou & Wandy Beatty & Lili Ren & Yaw Shin Ooi & Juhee Son & Yinxing Zhu & Qingyu Sheng & Wanyi Huang & Dian Li & Constin Liu & Olivia L. Welsh & Danica M. Sutherland & Terence S. Dermody & Chen, 2025. "SAMD9 senses cytosolic double-stranded nucleic acids in epithelial and mesenchymal cells to induce antiviral immunity," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    6. Wei-Wei Luo & Zhen Tong & Pan Cao & Fu-Bing Wang & Ying Liu & Zhou-Qin Zheng & Su-Yun Wang & Shu Li & Yan-Yi Wang, 2022. "Transcription-independent regulation of STING activation and innate immune responses by IRF8 in monocytes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Zi-Yi Han & Zhuang-Jiong Fu & Yu-Zhang Wang & Cheng Zhang & Qi-Wen Chen & Jia-Xin An & Xian-Zheng Zhang, 2024. "Probiotics functionalized with a gallium-polyphenol network modulate the intratumor microbiota and promote anti-tumor immune responses in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Nina Frey & Luigi Tortola & David Egli & Sharan Janjuha & Tanja Rothgangl & Kim Fabiano Marquart & Franziska Ampenberger & Manfred Kopf & Gerald Schwank, 2022. "Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Tomalika R. Ullah & Matt D. Johansen & Katherine R. Balka & Rebecca L. Ambrose & Linden J. Gearing & James Roest & Julian P. Vivian & Sunil Sapkota & W. Samantha N. Jayasekara & Daniel S. Wenholz & Vi, 2023. "Pharmacological inhibition of TBK1/IKKε blunts immunopathology in a murine model of SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Hang Zhou & Wenjun Wang & Hairong Xu & Yong Liang & Jiyu Ding & Mengjie Lv & Boyang Ren & Hua Peng & Yang-Xin Fu & Mingzhao Zhu, 2024. "Metabolic reprograming mediated by tumor cell-intrinsic type I IFN signaling is required for CD47-SIRPα blockade efficacy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Xiaoyu Liu & Yaping Zhuang & Wei Huang & Zhuozhuo Wu & Yingjie Chen & Qungang Shan & Yuefang Zhang & Zhiyuan Wu & Xiaoyi Ding & Zilong Qiu & Wenguo Cui & Zhongmin Wang, 2023. "Interventional hydrogel microsphere vaccine as an immune amplifier for activated antitumour immunity after ablation therapy," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Lucia Taraborrelli & Yasin Şenbabaoğlu & Lifen Wang & Junghyun Lim & Kerrigan Blake & Noelyn Kljavin & Sarah Gierke & Alexis Scherl & James Ziai & Erin McNamara & Mark Owyong & Shilpa Rao & Aslihan Ka, 2023. "Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Xudong Chen & Min Xie & Sensen Zhang & Marta Monguió-Tortajada & Jian Yin & Chang Liu & Youqi Zhang & Maeva Delacrétaz & Mingyue Song & Yixue Wang & Lin Dong & Qiang Ding & Boda Zhou & Xiaolin Tian & , 2023. "Structural basis for recruitment of TASL by SLC15A4 in human endolysosomal TLR signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Yichen Guo & Yongjuan Li & Mengzhe Zhang & Rong Ma & Yayun Wang & Xiao Weng & Jinjie Zhang & Zhenzhong Zhang & Xiaoyuan Chen & Weijing Yang, 2024. "Polymeric nanocarrier via metabolism regulation mediates immunogenic cell death with spatiotemporal orchestration for cancer immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Zhusheng Huang & Shiqian Huang & Simin Song & Yankui Ding & Hao Zhou & Shaoyin Zhang & Lixing Weng & Ying Zhang & Yiqiao Hu & Ahu Yuan & Yunlu Dai & Zhimin Luo & Lianhui Wang, 2024. "Two-dimensional coordination risedronate-manganese nanobelts as adjuvant for cancer radiotherapy and immunotherapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. Xuan Wang & Yingqi Liu & Chencheng Xue & Yan Hu & Yuanyuan Zhao & Kaiyong Cai & Menghuan Li & Zhong Luo, 2022. "A protein-based cGAS-STING nanoagonist enhances T cell-mediated anti-tumor immune responses," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    17. Xintao Tu & Ting-Ting Chu & Devon Jeltema & Kennady Abbott & Kun Yang & Cong Xing & Jie Han & Nicole Dobbs & Nan Yan, 2022. "Interruption of post-Golgi STING trafficking activates tonic interferon signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Wanzun Lin & Li Chen & Haojiong Zhang & Xianxin Qiu & Qingting Huang & Fangzhu Wan & Ziyu Le & Shikai Geng & Anlan Zhang & Sufang Qiu & Long Chen & Lin Kong & Jiade J. Lu, 2023. "Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    19. Lianmei Tan & Tao Yin & Handan Xiang & Liuyang Wang & Poorva Mudgal & Junying Chen & Yi Ding & Guoping Wang & Bryan Jian Wei Lim & Yuqi Huang & De Huang & Yaosi Liang & Peter B. Alexander & Kun Xiang , 2024. "Aberrant cytoplasmic expression of UHRF1 restrains the MHC-I-mediated anti-tumor immune response," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Haruka Kemmoku & Kanoko Takahashi & Kojiro Mukai & Toshiki Mori & Koichiro M. Hirosawa & Fumika Kiku & Yasunori Uchida & Yoshihiko Kuchitsu & Yu Nishioka & Masaaki Sawa & Takuma Kishimoto & Kazuma Tan, 2024. "Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56407-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.