IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53208-2.html
   My bibliography  Save this article

Active state structures of a bistable visual opsin bound to G proteins

Author

Listed:
  • Oliver Tejero

    (PSI Center for Life Sciences
    ETH Zurich)

  • Filip Pamula

    (PSI Center for Life Sciences
    Aarhus University)

  • Mitsumasa Koyanagi

    (Osaka Metropolitan University
    Osaka Metropolitan University)

  • Takashi Nagata

    (Osaka City University
    The University of Tokyo)

  • Pavel Afanasyev

    (ETH Zurich)

  • Ishita Das

    (Weizmann Institute of Science)

  • Xavier Deupi

    (PSI Center for Life Sciences
    PSI Center for Scientific Computing, Theory and Data
    Swiss Institute of Bioinformatics)

  • Mordechai Sheves

    (Weizmann Institute of Science)

  • Akihisa Terakita

    (Osaka Metropolitan University
    Osaka Metropolitan University)

  • Gebhard F. X. Schertler

    (PSI Center for Life Sciences)

  • Matthew J. Rodrigues

    (PSI Center for Life Sciences)

  • Ching-Ju Tsai

    (PSI Center for Life Sciences)

Abstract

Opsins are G protein-coupled receptors (GPCRs) that have evolved to detect light stimuli and initiate intracellular signaling cascades. Their role as signal transducers is critical to light perception across the animal kingdom. Opsins covalently bind to the chromophore 11-cis retinal, which isomerizes to the all-trans isomer upon photon absorption, causing conformational changes that result in receptor activation. Monostable opsins, responsible for vision in vertebrates, release the chromophore after activation and must bind another retinal molecule to remain functional. In contrast, bistable opsins, responsible for non-visual light perception in vertebrates and for vision in invertebrates, absorb a second photon in the active state to return the chromophore and protein to the inactive state. Structures of bistable opsins in the activated state have proven elusive, limiting our understanding of how they function as bidirectional photoswitches. Here we present active state structures of a bistable opsin, jumping spider rhodopsin isoform-1 (JSR1), in complex with its downstream signaling partners, the Gi and Gq heterotrimers. These structures elucidate key differences in the activation mechanisms between monostable and bistable opsins, offering essential insights for the rational engineering of bistable opsins into diverse optogenetic tools to control G protein signaling pathways.

Suggested Citation

  • Oliver Tejero & Filip Pamula & Mitsumasa Koyanagi & Takashi Nagata & Pavel Afanasyev & Ishita Das & Xavier Deupi & Mordechai Sheves & Akihisa Terakita & Gebhard F. X. Schertler & Matthew J. Rodrigues , 2024. "Active state structures of a bistable visual opsin bound to G proteins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53208-2
    DOI: 10.1038/s41467-024-53208-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53208-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53208-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui-Woog Choe & Yong Ju Kim & Jung Hee Park & Takefumi Morizumi & Emil F. Pai & Norbert Krauß & Klaus Peter Hofmann & Patrick Scheerer & Oliver P. Ernst, 2011. "Crystal structure of metarhodopsin II," Nature, Nature, vol. 471(7340), pages 651-655, March.
    2. A. J. Venkatakrishnan & Xavier Deupi & Guillaume Lebon & Christopher G. Tate & Gebhard F. Schertler & M. Madan Babu, 2013. "Molecular signatures of G-protein-coupled receptors," Nature, Nature, vol. 494(7436), pages 185-194, February.
    3. Kevin X. Zhang & Shane D’Souza & Brian A. Upton & Stace Kernodle & Shruti Vemaraju & Gowri Nayak & Kevin D. Gaitonde & Amanda L. Holt & Courtney D. Linne & April N. Smith & Nathan T. Petts & Matthew B, 2020. "Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons," Nature, Nature, vol. 585(7825), pages 420-425, September.
    4. Daniel M. Rosenbaum & Søren G. F. Rasmussen & Brian K. Kobilka, 2009. "The structure and function of G-protein-coupled receptors," Nature, Nature, vol. 459(7245), pages 356-363, May.
    5. Midori Murakami & Tsutomu Kouyama, 2008. "Crystal structure of squid rhodopsin," Nature, Nature, vol. 453(7193), pages 363-367, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eyal Rozenfeld & Merav Tauber & Yair Ben-Chaim & Moshe Parnas, 2021. "GPCR voltage dependence controls neuronal plasticity and behavior," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Sathvik Anantakrishnan & Athi N. Naganathan, 2023. "Thermodynamic architecture and conformational plasticity of GPCRs," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Marie Mi Bonde & Jonas Tind Hansen & Samra Joke Sanni & Stig Haunsø & Steen Gammeltoft & Christina Lyngsø & Jakob Lerche Hansen, 2010. "Biased Signaling of the Angiotensin II Type 1 Receptor Can Be Mediated through Distinct Mechanisms," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-15, November.
    4. Yuxia Qian & Jiening Wang & Linlin Yang & Yanru Liu & Lina Wang & Wei Liu & Yun Lin & Hong Yang & Lixin Ma & Sheng Ye & Shan Wu & Anna Qiao, 2022. "Activation and signaling mechanism revealed by GPR119-Gs complex structures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Gregory Zilberg & Alexandra K. Parpounas & Audrey L. Warren & Shifan Yang & Daniel Wacker, 2024. "Molecular basis of human trace amine-associated receptor 1 activation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Kaihua Zhang & Hao Wu & Nicholas Hoppe & Aashish Manglik & Yifan Cheng, 2022. "Fusion protein strategies for cryo-EM study of G protein-coupled receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Wen Z. Yang & Hengchang Xie & Xiaosa Du & Qian Zhou & Yan Xiao & Zhengdong Zhao & Xiaoning Jia & Jianhui Xu & Wen Zhang & Shuang Cai & Zhangjie Li & Xin Fu & Rong Hua & Junhao Cai & Shuang Chang & Jin, 2023. "A parabrachial-hypothalamic parallel circuit governs cold defense in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Aika Iwama & Ryoji Kise & Hiroaki Akasaka & Fumiya K. Sano & Hidetaka S. Oshima & Asuka Inoue & Wataru Shihoya & Osamu Nureki, 2024. "Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Hiroaki Akasaka & Tatsuki Tanaka & Fumiya K. Sano & Yuma Matsuzaki & Wataru Shihoya & Osamu Nureki, 2022. "Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Miguel Fribourg & Diomedes E Logothetis & Javier González-Maeso & Stuart C Sealfon & Belén Galocha-Iragüen & Fernando Las-Heras Andrés & Vladimir Brezina, 2017. "Elucidation of molecular kinetic schemes from macroscopic traces using system identification," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-34, February.
    11. Mark J. Wall & Emily Hill & Robert Huckstepp & Kerry Barkan & Giuseppe Deganutti & Michele Leuenberger & Barbara Preti & Ian Winfield & Sabrina Carvalho & Anna Suchankova & Haifeng Wei & Dewi Safitri , 2022. "Selective activation of Gαob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    12. Tamaki Izume & Ryo Kawahara & Akiharu Uwamizu & Luying Chen & Shun Yaginuma & Jumpei Omi & Hiroki Kawana & Fengjue Hou & Fumiya K. Sano & Tatsuki Tanaka & Kazuhiro Kobayashi & Hiroyuki H. Okamoto & Yo, 2024. "Structural basis for lysophosphatidylserine recognition by GPR34," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Holly J Atkinson & John H Morris & Thomas E Ferrin & Patricia C Babbitt, 2009. "Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-14, February.
    14. Ahmed Wagdi & Daniela Malan & Udhayabhaskar Sathyanarayanan & Janosch S. Beauchamp & Markus Vogt & David Zipf & Thomas Beiert & Berivan Mansuroglu & Vanessa Dusend & Mark Meininghaus & Linn Schneider , 2022. "Selective optogenetic control of Gq signaling using human Neuropsin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Wenli Zhao & Wenru Zhang & Mu Wang & Minmin Lu & Shutian Chen & Tingting Tang & Gisela Schnapp & Holger Wagner & Albert Brennauer & Cuiying Yi & Xiaojing Chu & Shuo Han & Beili Wu & Qiang Zhao, 2022. "Ligand recognition and activation of neuromedin U receptor 2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Chris Habrian & Naomi Latorraca & Zhu Fu & Ehud Y. Isacoff, 2023. "Homo- and hetero-dimeric subunit interactions set affinity and efficacy in metabotropic glutamate receptors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Longjun Pu & Jing Wang & Qiongxuan Lu & Lars Nilsson & Alison Philbrook & Anjali Pandey & Lina Zhao & Robin van Schendel & Alan Koh & Tanara V. Peres & Weheliye H. Hashi & Si Lhyam Myint & Chloe Willi, 2023. "Dissecting the genetic landscape of GPCR signaling through phenotypic profiling in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Tadataka Tsuji & Vladimir Tolstikov & Yang Zhang & Tian Lian Huang & Henrique Camara & Meghan Halpin & Niven R. Narain & King-Wai Yau & Matthew D. Lynes & Michael A. Kiebish & Yu-Hua Tseng, 2024. "Light-responsive adipose-hypothalamus axis controls metabolic regulation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Anna Strunecka & Otakar Strunecky, 2019. "Chronic Fluoride Exposure and the Risk of Autism Spectrum Disorder," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    20. Sebastian Bandholtz & Jörg Wichard & Ronald Kühne & Carsten Grötzinger, 2012. "Molecular Evolution of a Peptide GPCR Ligand Driven by Artificial Neural Networks," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-11, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53208-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.