IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51265-1.html
   My bibliography  Save this article

Indistinguishable photons from an artificial atom in silicon photonics

Author

Listed:
  • Lukasz Komza

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory)

  • Polnop Samutpraphoot

    (Lawrence Berkeley National Laboratory
    University of California, Berkeley)

  • Mutasem Odeh

    (Lawrence Berkeley National Laboratory
    University of California, Berkeley)

  • Yu-Lung Tang

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory)

  • Milena Mathew

    (Lawrence Berkeley National Laboratory
    University of California, Berkeley)

  • Jiu Chang

    (University of California, Berkeley)

  • Hanbin Song

    (University of California, Berkeley)

  • Myung-Ki Kim

    (University of California, Berkeley
    Korea University)

  • Yihuang Xiong

    (Dartmouth College)

  • Geoffroy Hautier

    (Dartmouth College)

  • Alp Sipahigil

    (University of California, Berkeley
    Lawrence Berkeley National Laboratory
    University of California, Berkeley)

Abstract

Silicon is the ideal material for building electronic and photonic circuits at scale. Integrated photonic quantum technologies in silicon offer a promising path to scaling by leveraging advanced semiconductor manufacturing and integration capabilities. However, the lack of deterministic quantum light sources and strong photon-photon interactions in silicon poses a challenge to scalability. In this work, we demonstrate an indistinguishable photon source in silicon photonics based on an artificial atom. We show that a G center in a silicon waveguide can generate high-purity telecom-band single photons. We perform high-resolution spectroscopy and time-delayed two-photon interference to demonstrate the indistinguishability of single photons emitted from a G center in a silicon waveguide. Our results show that artificial atoms in silicon photonics can source single photons suitable for photonic quantum networks and processors.

Suggested Citation

  • Lukasz Komza & Polnop Samutpraphoot & Mutasem Odeh & Yu-Lung Tang & Milena Mathew & Jiu Chang & Hanbin Song & Myung-Ki Kim & Yihuang Xiong & Geoffroy Hautier & Alp Sipahigil, 2024. "Indistinguishable photons from an artificial atom in silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51265-1
    DOI: 10.1038/s41467-024-51265-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51265-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51265-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen Sun & Mark T. Wade & Yunsup Lee & Jason S. Orcutt & Luca Alloatti & Michael S. Georgas & Andrew S. Waterman & Jeffrey M. Shainline & Rimas R. Avizienis & Sen Lin & Benjamin R. Moss & Rajesh Kumar, 2015. "Single-chip microprocessor that communicates directly using light," Nature, Nature, vol. 528(7583), pages 534-538, December.
    2. W. Redjem & Y. Zhiyenbayev & W. Qarony & V. Ivanov & C. Papapanos & W. Liu & K. Jhuria & Z. Y. Al Balushi & S. Dhuey & A. Schwartzberg & L. Z. Tan & T. Schenkel & B. Kanté, 2023. "All-silicon quantum light source by embedding an atomic emissive center in a nanophotonic cavity," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. M. K. Bhaskar & R. Riedinger & B. Machielse & D. S. Levonian & C. T. Nguyen & E. N. Knall & H. Park & D. Englund & M. Lončar & D. D. Sukachev & M. D. Lukin, 2020. "Experimental demonstration of memory-enhanced quantum communication," Nature, Nature, vol. 580(7801), pages 60-64, April.
    4. Daniel B. Higginbottom & Alexander T. K. Kurkjian & Camille Chartrand & Moein Kazemi & Nicholas A. Brunelle & Evan R. MacQuarrie & James R. Klein & Nicholas R. Lee-Hone & Jakub Stacho & Myles Ruether , 2022. "Optical observation of single spins in silicon," Nature, Nature, vol. 607(7918), pages 266-270, July.
    5. Charles Santori & David Fattal & Jelena Vučković & Glenn S. Solomon & Yoshihisa Yamamoto, 2002. "Indistinguishable photons from a single-photon device," Nature, Nature, vol. 419(6907), pages 594-597, October.
    6. D. Istrati & Y. Pilnyak & J. C. Loredo & C. Antón & N. Somaschi & P. Hilaire & H. Ollivier & M. Esmann & L. Cohen & L. Vidro & C. Millet & A. Lemaître & I. Sagnes & A. Harouri & L. Lanco & P. Senellar, 2020. "Sequential generation of linear cluster states from a single photon emitter," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    7. Y-F Pu & N. Jiang & W. Chang & H-X Yang & C. Li & L-M Duan, 2017. "Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
    8. M. H. Abobeih & Y. Wang & J. Randall & S. J. H. Loenen & C. E. Bradley & M. Markham & D. J. Twitchen & B. M. Terhal & T. H. Taminiau, 2022. "Fault-tolerant operation of a logical qubit in a diamond quantum processor," Nature, Nature, vol. 606(7916), pages 884-889, June.
    9. O. Gazzano & S. Michaelis de Vasconcellos & C. Arnold & A. Nowak & E. Galopin & I. Sagnes & L. Lanco & A. Lemaître & P. Senellart, 2013. "Bright solid-state sources of indistinguishable single photons," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    10. Mihika Prabhu & Carlos Errando-Herranz & Lorenzo Santis & Ian Christen & Changchen Chen & Connor Gerlach & Dirk Englund, 2023. "Individually addressable and spectrally programmable artificial atoms in silicon photonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron M. Day & Madison Sutula & Jonathan R. Dietz & Alexander Raun & Denis D. Sukachev & Mihir K. Bhaskar & Evelyn L. Hu, 2024. "Electrical manipulation of telecom color centers in silicon," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Adam Johnston & Ulises Felix-Rendon & Yu-En Wong & Songtao Chen, 2024. "Cavity-coupled telecom atomic source in silicon," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Valeria Saggio & Carlos Errando-Herranz & Samuel Gyger & Christopher Panuski & Mihika Prabhu & Lorenzo Santis & Ian Christen & Dalia Ornelas-Huerta & Hamza Raniwala & Connor Gerlach & Marco Colangelo , 2024. "Cavity-enhanced single artificial atoms in silicon," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    4. Andreas Gritsch & Alexander Ulanowski & Jakob Pforr & Andreas Reiserer, 2025. "Optical single-shot readout of spin qubits in silicon," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    5. K. Jhuria & V. Ivanov & D. Polley & Y. Zhiyenbayev & W. Liu & A. Persaud & W. Redjem & W. Qarony & P. Parajuli & Q. Ji & A. J. Gonsalves & J. Bokor & L. Z. Tan & B. Kanté & T. Schenkel, 2024. "Programmable quantum emitter formation in silicon," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. G. L. Stolpe & D. P. Kwiatkowski & C. E. Bradley & J. Randall & M. H. Abobeih & S. A. Breitweiser & L. C. Bassett & M. Markham & D. J. Twitchen & T. H. Taminiau, 2024. "Mapping a 50-spin-qubit network through correlated sensing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Hodaka Kurokawa & Keidai Wakamatsu & Shintaro Nakazato & Toshiharu Makino & Hiromitsu Kato & Yuhei Sekiguchi & Hideo Kosaka, 2024. "Coherent electric field control of orbital state of a neutral nitrogen-vacancy center," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Martin Ringbauer & Marcel Hinsche & Thomas Feldker & Paul K. Faehrmann & Juani Bermejo-Vega & Claire L. Edmunds & Lukas Postler & Roman Stricker & Christian D. Marciniak & Michael Meth & Ivan Pogorelo, 2025. "Verifiable measurement-based quantum random sampling with trapped ions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    9. Hanfeng Wang & Matthew E. Trusheim & Laura Kim & Hamza Raniwala & Dirk R. Englund, 2023. "Field programmable spin arrays for scalable quantum repeaters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Neereja Sundaresan & Theodore J. Yoder & Youngseok Kim & Muyuan Li & Edward H. Chen & Grace Harper & Ted Thorbeck & Andrew W. Cross & Antonio D. Córcoles & Maika Takita, 2023. "Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Yan-Kai Tzeng & Feng Ke & Chunjing Jia & Yayuan Liu & Sulgiye Park & Minkyung Han & Mungo Frost & Xinxin Cai & Wendy L. Mao & Rodney C. Ewing & Yi Cui & Thomas P. Devereaux & Yu Lin & Steven Chu, 2024. "Improving the creation of SiV centers in diamond via sub-μs pulsed annealing treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Ryan Snodgrass & Vincent Kotsubo & Scott Backhaus & Joel Ullom, 2024. "Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. E. Mehdi & M. Gundín & C. Millet & N. Somaschi & A. Lemaître & I. Sagnes & L. Gratiet & D. A. Fioretto & N. Belabas & O. Krebs & P. Senellart & L. Lanco, 2024. "Giant optical polarisation rotations induced by a single quantum dot spin," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Yaxiao Lian & Dongchen Lan & Shiyu Xing & Bingbing Guo & Zhixiang Ren & Runchen Lai & Chen Zou & Baodan Zhao & Richard H. Friend & Dawei Di, 2022. "Ultralow-voltage operation of light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Sheng Zhang & Jixuan Shi & Yibo Liang & Yuedong Sun & Yukai Wu & Luming Duan & Yunfei Pu, 2024. "Fast delivery of heralded atom-photon quantum correlation over 12 km fiber through multiplexing enhancement," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Paweł Holewa & Daniel A. Vajner & Emilia Zięba-Ostój & Maja Wasiluk & Benedek Gaál & Aurimas Sakanas & Marek Burakowski & Paweł Mrowiński & Bartosz Krajnik & Meng Xiong & Kresten Yvind & Niels Gregers, 2024. "High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Michael Hollenbach & Nico Klingner & Nagesh S. Jagtap & Lothar Bischoff & Ciarán Fowley & Ulrich Kentsch & Gregor Hlawacek & Artur Erbe & Nikolay V. Abrosimov & Manfred Helm & Yonder Berencén & Georgy, 2022. "Wafer-scale nanofabrication of telecom single-photon emitters in silicon," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Deng, Yuanyang, 2024. "Asymmetric controlled remote implementation of operations in different dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51265-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.