IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49588-0.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

MethPhaser: methylation-based long-read haplotype phasing of human genomes

Author

Listed:
  • Yilei Fu

    (Rice University)

  • Sergey Aganezov

    (Oxford Nanopore Technologies Inc)

  • Medhat Mahmoud

    (Baylor College of Medicine
    Baylor College of Medicine)

  • John Beaulaurier

    (Oxford Nanopore Technologies Inc)

  • Sissel Juul

    (Oxford Nanopore Technologies Inc)

  • Todd J. Treangen

    (Rice University
    Rice University)

  • Fritz J. Sedlazeck

    (Rice University
    Baylor College of Medicine
    Baylor College of Medicine)

Abstract

The assignment of variants across haplotypes, phasing, is crucial for predicting the consequences, interaction, and inheritance of mutations and is a key step in improving our understanding of phenotype and disease. However, phasing is limited by read length and stretches of homozygosity along the genome. To overcome this limitation, we designed MethPhaser, a method that utilizes methylation signals from Oxford Nanopore Technologies to extend Single Nucleotide Variation (SNV)-based phasing. We demonstrate that haplotype-specific methylations extensively exist in Human genomes and the advent of long-read technologies enabled direct report of methylation signals. For ONT R9 and R10 cell line data, we increase the phase length N50 by 78%-151% at a phasing accuracy of 83.4-98.7% To assess the impact of tissue purity and random methylation signals due to inactivation, we also applied MethPhaser on blood samples from 4 patients, still showing improvements over SNV-only phasing. MethPhaser further improves phasing across HLA and multiple other medically relevant genes, improving our understanding of how mutations interact across multiple phenotypes. The concept of MethPhaser can also be extended to non-human diploid genomes. MethPhaser is available at https://github.com/treangenlab/methphaser .

Suggested Citation

  • Yilei Fu & Sergey Aganezov & Medhat Mahmoud & John Beaulaurier & Sissel Juul & Todd J. Treangen & Fritz J. Sedlazeck, 2024. "MethPhaser: methylation-based long-read haplotype phasing of human genomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49588-0
    DOI: 10.1038/s41467-024-49588-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49588-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49588-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zaka Wing-Sze Yuen & Akanksha Srivastava & Runa Daniel & Dennis McNevin & Cameron Jack & Eduardo Eyras, 2021. "Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Ting Wang & Lucinda Antonacci-Fulton & Kerstin Howe & Heather A. Lawson & Julian K. Lucas & Adam M. Phillippy & Alice B. Popejoy & Mobin Asri & Caryn Carson & Mark J. P. Chaisson & Xian Chang & Robert, 2022. "The Human Pangenome Project: a global resource to map genomic diversity," Nature, Nature, vol. 604(7906), pages 437-446, April.
    3. Peng Ni & Fan Nie & Zeyu Zhong & Jinrui Xu & Neng Huang & Jun Zhang & Haochen Zhao & You Zou & Yuanfeng Huang & Jinchen Li & Chuan-Le Xiao & Feng Luo & Jianxin Wang, 2023. "DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen-Dong Zhong & Ying-Yuan Xie & Hong-Xuan Chen & Ye-Lin Lan & Xue-Hong Liu & Jing-Yun Ji & Fu Wu & Lingmei Jin & Jiekai Chen & Daniel W. Mak & Zhang Zhang & Guan-Zheng Luo, 2023. "Systematic comparison of tools used for m6A mapping from nanopore direct RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Robin Aguilar & Conor K. Camplisson & Qiaoyi Lin & Karen H. Miga & William S. Noble & Brian J. Beliveau, 2024. "Tigerfish designs oligonucleotide-based in situ hybridization probes targeting intervals of highly repetitive DNA at the scale of genomes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Xue Yue & Zhiyuan Xie & Moran Li & Kai Wang & Xiaojing Li & Xiaoqing Zhang & Jian Yan & Yimeng Yin, 2022. "Simultaneous profiling of histone modifications and DNA methylation via nanopore sequencing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. P Acera Mateos & A J Sethi & A Ravindran & A Srivastava & K Woodward & S Mahmud & M Kanchi & M Guarnacci & J Xu & Z W S Yuen & Y Zhou & A Sneddon & W Hamilton & J Gao & L M Starrs & R Hayashi & V Wick, 2024. "Prediction of m6A and m5C at single-molecule resolution reveals a transcriptome-wide co-occurrence of RNA modifications," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Dominik Stanojević & Zhe Li & Sara Bakić & Roger Foo & Mile Šikić, 2024. "Rockfish: A transformer-based model for accurate 5-methylcytosine prediction from nanopore sequencing," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Tobias T. Schmidt & Carly Tyer & Preeyesh Rughani & Candy Haggblom & Jeffrey R. Jones & Xiaoguang Dai & Kelly A. Frazer & Fred H. Gage & Sissel Juul & Scott Hickey & Jan Karlseder, 2024. "High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Peng Ni & Fan Nie & Zeyu Zhong & Jinrui Xu & Neng Huang & Jun Zhang & Haochen Zhao & You Zou & Yuanfeng Huang & Jinchen Li & Chuan-Le Xiao & Feng Luo & Jianxin Wang, 2023. "DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Peng Ni & Neng Huang & Fan Nie & Jun Zhang & Zhi Zhang & Bo Wu & Lu Bai & Wende Liu & Chuan-Le Xiao & Feng Luo & Jianxin Wang, 2021. "Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49588-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.