IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48293-2.html
   My bibliography  Save this article

Snail-inspired water-enhanced soft sliding suction for climbing robots

Author

Listed:
  • Tianqi Yue

    (University of Bristol)

  • Hermes Bloomfield-Gadêlha

    (University of Bristol)

  • Jonathan Rossiter

    (University of Bristol)

Abstract

Snails can stably slide across a surface with only a single high-payload sucker, offering an efficient adhesive locomotion mechanism for next-generation climbing robots. The critical factor for snails’ sliding suction behaviour is mucus secretion, which reduces friction and enhances suction. Inspired by this, we proposed an artificial sliding suction mechanism. The sliding suction utilizes water as an artificial mucus, which is widely available and evaporates with no residue. The sliding suction allows a lightweight robot (96 g) to slide vertically and upside down, achieving high speeds (rotation of 53°/s and translation of 19 mm/s) and high payload (1 kg as tested and 5.03 kg in theory), and does not require energy during adhesion. Here, we show that the sliding suction is a low-cost, energy-efficient, high-payload and clean adhesive locomotion strategy, which has high potential for use in climbing robots, outdoor inspection robots and robotic transportation.

Suggested Citation

  • Tianqi Yue & Hermes Bloomfield-Gadêlha & Jonathan Rossiter, 2024. "Snail-inspired water-enhanced soft sliding suction for climbing robots," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48293-2
    DOI: 10.1038/s41467-024-48293-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48293-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48293-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48293-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.