IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48026-5.html
   My bibliography  Save this article

Arbitrary engineering of spatial caustics with 3D-printed metasurfaces

Author

Listed:
  • Xiaoyan Zhou

    (Zhejiang University
    National University of Singapore
    Singapore University of Technology and Design)

  • Hongtao Wang

    (National University of Singapore
    Singapore University of Technology and Design)

  • Shuxi Liu

    (Zhejiang University)

  • Hao Wang

    (Singapore University of Technology and Design)

  • John You En Chan

    (Singapore University of Technology and Design)

  • Cheng-Feng Pan

    (National University of Singapore
    Singapore University of Technology and Design)

  • Daomu Zhao

    (Zhejiang University)

  • Joel K. W. Yang

    (Singapore University of Technology and Design)

  • Cheng-Wei Qiu

    (National University of Singapore)

Abstract

Caustics occur in diverse physical systems, spanning the nano-scale in electron microscopy to astronomical-scale in gravitational lensing. As envelopes of rays, optical caustics result in sharp edges or extended networks. Caustics in structured light, characterized by complex-amplitude distributions, have innovated numerous applications including particle manipulation, high-resolution imaging techniques, and optical communication. However, these applications have encountered limitations due to a major challenge in engineering caustic fields with customizable propagation trajectories and in-plane intensity profiles. Here, we introduce the “compensation phase” via 3D-printed metasurfaces to shape caustic fields with curved trajectories in free space. The in-plane caustic patterns can be preserved or morphed from one structure to another during propagation. Large-scale fabrication of these metasurfaces is enabled by the fast-prototyping and cost-effective two-photon polymerization lithography. Our optical elements with the ultra-thin profile and sub-millimeter extension offer a compact solution to generating caustic structured light for beam shaping, high-resolution microscopy, and light-matter-interaction studies.

Suggested Citation

  • Xiaoyan Zhou & Hongtao Wang & Shuxi Liu & Hao Wang & John You En Chan & Cheng-Feng Pan & Daomu Zhao & Joel K. W. Yang & Cheng-Wei Qiu, 2024. "Arbitrary engineering of spatial caustics with 3D-printed metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48026-5
    DOI: 10.1038/s41467-024-48026-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48026-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48026-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Alessandro Zannotti & Cornelia Denz & Miguel A. Alonso & Mark R. Dennis, 2020. "Shaping caustics into propagation-invariant light," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Wei Ting Chen & Joon-Suh Park & Justin Marchioni & Sophia Millay & Kerolos M. A. Yousef & Federico Capasso, 2023. "Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Abdulhakim Bake & Qi Zhang & Cong Son Ho & Grace L. Causer & Weiyao Zhao & Zengji Yue & Alexander Nguyen & Golrokh Akhgar & Julie Karel & David Mitchell & Zeljko Pastuovic & Roger Lewis & Jared H. Col, 2023. "Top-down patterning of topological surface and edge states using a focused ion beam," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Romeo & Antonio Di Bartolomeo, 2023. "The experimental demonstration of a topological current divider," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    2. Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Aleksandr Barulin & Yeseul Kim & Dong Kyo Oh & Jaehyuck Jang & Hyemi Park & Junsuk Rho & Inki Kim, 2024. "Dual-wavelength metalens enables Epi-fluorescence detection from single molecules," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Pei-Nan Ni & Pan Fu & Pei-Pei Chen & Chen Xu & Yi-Yang Xie & Patrice Genevet, 2022. "Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48026-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.