IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47978-y.html
   My bibliography  Save this article

Solving conformal defects in 3D conformal field theory using fuzzy sphere regularization

Author

Listed:
  • Liangdong Hu

    (Westlake University
    Westlake Institute for Advanced Study)

  • Yin-Chen He

    (Perimeter Institute for Theoretical Physics)

  • W. Zhu

    (Westlake University)

Abstract

Defects in conformal field theory (CFT) are of significant theoretical and experimental importance. The presence of defects theoretically enriches the structure of the CFT, but at the same time, it makes it more challenging to study, especially in dimensions higher than two. Here, we demonstrate that the recently-developed theoretical scheme, fuzzy (non-commutative) sphere regularization, provides a powerful lens through which one can dissect the defect of 3D CFTs in a transparent way. As a notable example, we study the magnetic line defect of 3D Ising CFT and clearly demonstrate that it flows to a conformal defect fixed point. We have identified 6 low-lying defect primary operators, including the displacement operator, and accurately extract their scaling dimensions through the state-operator correspondence. Moreover, we also compute one-point bulk correlators and two-point bulk-defect correlators, which show great agreement with predictions of defect conformal symmetry, and from which we extract various bulk-defect operator product expansion coefficients. Our work demonstrates that the fuzzy sphere offers a powerful tool for exploring the rich physics in 3D defect CFTs.

Suggested Citation

  • Liangdong Hu & Yin-Chen He & W. Zhu, 2024. "Solving conformal defects in 3D conformal field theory using fuzzy sphere regularization," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47978-y
    DOI: 10.1038/s41467-024-47978-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47978-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47978-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47978-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.