IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47129-3.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Subslab ultra low velocity anomaly uncovered by and facilitating the largest deep earthquake

Author

Listed:
  • Weiwen Chen

    (Nanyang Technological University
    China Earthquake Administration)

  • Shengji Wei

    (Nanyang Technological University
    Nanyang Technological University
    Chinese Academy of Sciences)

  • Weitao Wang

    (China Earthquake Administration)

Abstract

It is enigmatic that M8+ earthquakes can take place at depth greater than 600 km inside the slab, where the P-T conditions generally do not favor seismic slip rate (~m/s) on faults. Here we provide fresh insights to the initial rupture and mechanism of the Mw 8.3 Sea of Okhotsk earthquake by analyzing high-frequency (up to 0.8 Hz) teleseismic array data. We determine the relative location and timing of two early subevents, and the geometry and velocity perturbation of a nearby structure anomaly. We found a small-scale (~30 × 60 × 60 km) ultralow (−18 ± 2%) P-wave velocity anomaly located beneath the Pacific slab around the 660 km discontinuity. The volatile-bearing highly melted nature of the anomaly provides significant buoyancy, stressing the slab dramatically closer to the critical condition for thermal runaway weakening that allows the rupture to propagate beyond the metastable olivine wedge, forming M8+ events. Enormous velocity reduction urges for further mineral physics and geodynamic investigations.

Suggested Citation

  • Weiwen Chen & Shengji Wei & Weitao Wang, 2024. "Subslab ultra low velocity anomaly uncovered by and facilitating the largest deep earthquake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47129-3
    DOI: 10.1038/s41467-024-47129-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47129-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47129-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chrystèle Sanloup & James W. E. Drewitt & Zuzana Konôpková & Philip Dalladay-Simpson & Donna M. Morton & Nachiketa Rai & Wim van Westrenen & Wolfgang Morgenroth, 2013. "Structural change in molten basalt at deep mantle conditions," Nature, Nature, vol. 503(7474), pages 104-107, November.
    2. Peter B. Kelemen & Greg Hirth, 2007. "A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle," Nature, Nature, vol. 446(7137), pages 787-790, April.
    3. Anna Kelbert & Adam Schultz & Gary Egbert, 2009. "Global electromagnetic induction constraints on transition-zone water content variations," Nature, Nature, vol. 460(7258), pages 1003-1006, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suraj K. Bajgain & Aaron Wolfgang Ashley & Mainak Mookherjee & Dipta B. Ghosh & Bijaya B. Karki, 2022. "Insights into magma ocean dynamics from the transport properties of basaltic melt," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Hongyu Sun & Matej Pec, 2021. "Nanometric flow and earthquake instability," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Yu-Hsiang Chien & Enrico Marzotto & Yi-Chi Tsao & Wen-Pin Hsieh, 2024. "Anisotropic thermal conductivity of antigorite along slab subduction impacts seismicity of intermediate-depth earthquakes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Tomohiro Ohuchi & Yuji Higo & Yoshinori Tange & Takeshi Sakai & Kohei Matsuda & Tetsuo Irifune, 2022. "In situ X-ray and acoustic observations of deep seismic faulting upon phase transitions in olivine," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Shiwen Li & Yabin Li & Yanhui Zhang & Zikun Zhou & Junhao Guo & Aihua Weng, 2023. "Remnant of the late Permian superplume that generated the Siberian Traps inferred from geomagnetic data," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Wen-Yi Zhou & Ming Hao & Jin S. Zhang & Bin Chen & Ruijia Wang & Brandon Schmandt, 2022. "Constraining composition and temperature variations in the mantle transition zone," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Sotiris Alevizos & Thomas Poulet & Manolis Veveakis & Klaus Regenauer-Lieb, 2016. "Analysis of Dynamics in Multiphysics Modelling of Active Faults," Mathematics, MDPI, vol. 4(4), pages 1-14, September.
    8. Cun Chen & Xueping Li & Jingli Ren, 2019. "Complex Dynamical Behaviors in a Spring-Block Model with Periodic Perturbation," Complexity, Hindawi, vol. 2019, pages 1-14, March.
    9. Ke Ma & Long Guo & Wangheng Liu, 2018. "Investigation of the Spatial Clustering Properties of Seismic Time Series: A Comparative Study from Shallow to Intermediate-Depth Earthquakes," Complexity, Hindawi, vol. 2018, pages 1-10, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47129-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.