IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46692-z.html
   My bibliography  Save this article

Long-term effects of Omicron BA.2 breakthrough infection on immunity-metabolism balance: a 6-month prospective study

Author

Listed:
  • Yanhua Li

    (Chinese Academy of Sciences)

  • Shijie Qin

    (Chinese Academy of Sciences
    Shenzhen Children’s Hospital)

  • Lei Dong

    (Air Force Medical Center)

  • Shitong Qiao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiao Wang

    (Yunnan University)

  • Dongshan Yu

    (The Second Affiliated Hospital of Nanchang University)

  • Pengyue Gao

    (Chinese Academy of Sciences)

  • Yali Hou

    (Shanxi Academy of Advanced Research and Innovation)

  • Shouzhen Quan

    (Air Force Medical Center)

  • Ying Li

    (Air Force Medical Center)

  • Fengyan Fan

    (Air Force Medical Center)

  • Xin Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Beijing Life Science Academy)

  • Yueyun Ma

    (Air Force Medical Center)

  • George Fu Gao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Shanxi Academy of Advanced Research and Innovation)

Abstract

There have been reports of long coronavirus disease (long COVID) and breakthrough infections (BTIs); however, the mechanisms and pathological features of long COVID after Omicron BTIs remain unclear. Assessing long-term effects of COVID-19 and immune recovery after Omicron BTIs is crucial for understanding the disease and managing new-generation vaccines. Here, we followed up mild BA.2 BTI convalescents for six-month with routine blood tests, proteomic analysis and single-cell RNA sequencing (scRNA-seq). We found that major organs exhibited ephemeral dysfunction and recovered to normal in approximately six-month after BA.2 BTI. We also observed durable and potent levels of neutralizing antibodies against major circulating sub-variants, indicating that hybrid humoral immunity stays active. However, platelets may take longer to recover based on proteomic analyses, which also shows coagulation disorder and an imbalance between anti-pathogen immunity and metabolism six-month after BA.2 BTI. The immunity-metabolism imbalance was then confirmed with retrospective analysis of abnormal levels of hormones, low blood glucose level and coagulation profile. The long-term malfunctional coagulation and imbalance in the material metabolism and immunity may contribute to the development of long COVID and act as useful indicator for assessing recovery and the long-term impacts after Omicron sub-variant BTIs.

Suggested Citation

  • Yanhua Li & Shijie Qin & Lei Dong & Shitong Qiao & Xiao Wang & Dongshan Yu & Pengyue Gao & Yali Hou & Shouzhen Quan & Ying Li & Fengyan Fan & Xin Zhao & Yueyun Ma & George Fu Gao, 2024. "Long-term effects of Omicron BA.2 breakthrough infection on immunity-metabolism balance: a 6-month prospective study," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46692-z
    DOI: 10.1038/s41467-024-46692-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46692-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46692-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenmin Tian & Nan Zhang & Ronghua Jin & Yingmei Feng & Siyuan Wang & Shuaixin Gao & Ruqin Gao & Guizhen Wu & Di Tian & Wenjie Tan & Yang Chen & George Fu Gao & Catherine C. L. Wong, 2020. "Immune suppression in the early stage of COVID-19 disease," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Toni M. Delorey & Carly G. K. Ziegler & Graham Heimberg & Rachelly Normand & Yiming Yang & Åsa Segerstolpe & Domenic Abbondanza & Stephen J. Fleming & Ayshwarya Subramanian & Daniel T. Montoro & Karth, 2021. "COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets," Nature, Nature, vol. 595(7865), pages 107-113, July.
    3. Clemens Gutmann & Kaloyan Takov & Sean A. Burnap & Bhawana Singh & Hashim Ali & Konstantinos Theofilatos & Ella Reed & Maria Hasman & Adam Nabeebaccus & Matthew Fish & Mark JW. McPhail & Kevin O’Galla, 2021. "SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shelly J. Robertson & Olivia Bedard & Kristin L. McNally & Carl Shaia & Chad S. Clancy & Matthew Lewis & Rebecca M. Broeckel & Abhilash I. Chiramel & Jeffrey G. Shannon & Gail L. Sturdevant & Rebecca , 2023. "Genetically diverse mouse models of SARS-CoV-2 infection reproduce clinical variation in type I interferon and cytokine responses in COVID-19," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Xiaolei Wang & Terrence Tsz-Tai Yuen & Ying Dou & Jingchu Hu & Renhao Li & Zheng Zeng & Xuansheng Lin & Huarui Gong & Celia Hoi-Ching Chan & Chaemin Yoon & Huiping Shuai & Deborah Tip-Yin Ho & Ivan Fa, 2023. "Vaccine-induced protection against SARS-CoV-2 requires IFN-γ-driven cellular immune response," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Erik Duijvelaar & Jack Gisby & James E. Peters & Harm Jan Bogaard & Jurjan Aman, 2024. "Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Laura Heydemann & Małgorzata Ciurkiewicz & Georg Beythien & Kathrin Becker & Klaus Schughart & Stephanie Stanelle-Bertram & Berfin Schaumburg & Nancy Mounogou-Kouassi & Sebastian Beck & Martin Zickler, 2023. "Hamster model for post-COVID-19 alveolar regeneration offers an opportunity to understand post-acute sequelae of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Ronja Mothes & Anna Pascual-Reguant & Ralf Koehler & Juliane Liebeskind & Alina Liebheit & Sandy Bauherr & Lars Philipsen & Carsten Dittmayer & Michael Laue & Regina Manitius & Sefer Elezkurtaj & Pawe, 2023. "Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in severe COVID-19," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Tabea M. Eser & Olga Baranov & Manuel Huth & Mohammed I. M. Ahmed & Flora Deák & Kathrin Held & Luming Lin & Kami Pekayvaz & Alexander Leunig & Leo Nicolai & Georgios Pollakis & Marcus Buggert & David, 2023. "Nucleocapsid-specific T cell responses associate with control of SARS-CoV-2 in the upper airways before seroconversion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Jack S. Gisby & Norzawani B. Buang & Artemis Papadaki & Candice L. Clarke & Talat H. Malik & Nicholas Medjeral-Thomas & Damiola Pinheiro & Paige M. Mortimer & Shanice Lewis & Eleanor Sandhu & Stephen , 2022. "Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Maik Pietzner & Robert Lorenz Chua & Eleanor Wheeler & Katharina Jechow & Julian D. S. Willett & Helena Radbruch & Saskia Trump & Bettina Heidecker & Hugo Zeberg & Frank L. Heppner & Roland Eils & Mar, 2022. "ELF5 is a potential respiratory epithelial cell-specific risk gene for severe COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Praveen Weeratunga & Laura Denney & Joshua A. Bull & Emmanouela Repapi & Martin Sergeant & Rachel Etherington & Chaitanya Vuppussetty & Gareth D. H. Turner & Colin Clelland & Jeongmin Woo & Amy Cross , 2023. "Single cell spatial analysis reveals inflammatory foci of immature neutrophil and CD8 T cells in COVID-19 lungs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Haris Babačić & Wanda Christ & José Eduardo Araújo & Georgios Mermelekas & Nidhi Sharma & Janne Tynell & Marina García & Renata Varnaite & Hilmir Asgeirsson & Hedvig Glans & Janne Lehtiö & Sara Gredma, 2023. "Comprehensive proteomics and meta-analysis of COVID-19 host response," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Tomoko Nakanishi & Julian Willett & Yossi Farjoun & Richard J. Allen & Beatriz Guillen-Guio & Darin Adra & Sirui Zhou & J. Brent Richards, 2023. "Alternative splicing in lung influences COVID-19 severity and respiratory diseases," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Junedh M. Amrute & Alexandra M. Perry & Gautam Anand & Carlos Cruchaga & Karl G. Hock & Christopher W. Farnsworth & Gwendalyn J. Randolph & Kory J. Lavine & Ashley L. Steed, 2022. "Cell specific peripheral immune responses predict survival in critical COVID-19 patients," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Christina Beck & Deepak Ramanujam & Paula Vaccarello & Florenc Widenmeyer & Martin Feuerherd & Cho-Chin Cheng & Anton Bomhard & Tatiana Abikeeva & Julia Schädler & Jan-Peter Sperhake & Matthias Graw &, 2023. "Trimannose-coupled antimiR-21 for macrophage-targeted inhalation treatment of acute inflammatory lung damage," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Pablo Jané & Xiaoying Xu & Vincent Taelman & Eduardo Jané & Karim Gariani & Rebecca A. Dumont & Yonathan Garama & Francisco Kim & María Val Gomez & Martin A. Walter, 2023. "The Imageable Genome," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46692-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.