IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46375-9.html
   My bibliography  Save this article

High-resolution cryo-EM of the human CDK-activating kinase for structure-based drug design

Author

Listed:
  • Victoria I. Cushing

    (Chester Beatty Laboratories)

  • Adrian F. Koh

    (Thermo Fisher Scientific)

  • Junjie Feng

    (Chester Beatty Laboratories)

  • Kaste Jurgaityte

    (Hammersmith Hospital Campus)

  • Alexander Bondke

    (Imperial College London)

  • Sebastian H. B. Kroll

    (Imperial College London)

  • Marion Barbazanges

    (Imperial College London
    Sorbonne Université)

  • Bodo Scheiper

    (Imperial College London)

  • Ash K. Bahl

    (Nova UCD)

  • Anthony G. M. Barrett

    (Imperial College London)

  • Simak Ali

    (Hammersmith Hospital Campus)

  • Abhay Kotecha

    (Thermo Fisher Scientific)

  • Basil J. Greber

    (Chester Beatty Laboratories)

Abstract

Rational design of next-generation therapeutics can be facilitated by high-resolution structures of drug targets bound to small-molecule inhibitors. However, application of structure-based methods to macromolecules refractory to crystallization has been hampered by the often-limiting resolution and throughput of cryogenic electron microscopy (cryo-EM). Here, we use high-resolution cryo-EM to determine structures of the CDK-activating kinase, a master regulator of cell growth and division, in its free and nucleotide-bound states and in complex with 15 inhibitors at up to 1.8 Å resolution. Our structures provide detailed insight into inhibitor interactions and networks of water molecules in the active site of cyclin-dependent kinase 7 and provide insights into the mechanisms contributing to inhibitor selectivity, thereby providing the basis for rational design of next-generation therapeutics. These results establish a methodological framework for the use of high-resolution cryo-EM in structure-based drug design.

Suggested Citation

  • Victoria I. Cushing & Adrian F. Koh & Junjie Feng & Kaste Jurgaityte & Alexander Bondke & Sebastian H. B. Kroll & Marion Barbazanges & Bodo Scheiper & Ash K. Bahl & Anthony G. M. Barrett & Simak Ali &, 2024. "High-resolution cryo-EM of the human CDK-activating kinase for structure-based drug design," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46375-9
    DOI: 10.1038/s41467-024-46375-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46375-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46375-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Kwiatkowski & Tinghu Zhang & Peter B. Rahl & Brian J. Abraham & Jessica Reddy & Scott B. Ficarro & Anahita Dastur & Arnaud Amzallag & Sridhar Ramaswamy & Bethany Tesar & Catherine E. Jenkins , 2014. "Targeting transcription regulation in cancer with a covalent CDK7 inhibitor," Nature, Nature, vol. 511(7511), pages 616-620, July.
    2. Maksym Tsytlonok & Hugo Sanabria & Yuefeng Wang & Suren Felekyan & Katherina Hemmen & Aaron H. Phillips & Mi-Kyung Yun & M. Brett Waddell & Cheon-Gil Park & Sivaraja Vaithiyalingam & Luigi Iconaru & S, 2019. "Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Takanori Nakane & Abhay Kotecha & Andrija Sente & Greg McMullan & Simonas Masiulis & Patricia M. G. E. Brown & Ioana T. Grigoras & Lina Malinauskaite & Tomas Malinauskas & Jonas Miehling & Tomasz Ucha, 2020. "Single-particle cryo-EM at atomic resolution," Nature, Nature, vol. 587(7832), pages 152-156, November.
    4. Ka Man Yip & Niels Fischer & Elham Paknia & Ashwin Chari & Holger Stark, 2020. "Atomic-resolution protein structure determination by cryo-EM," Nature, Nature, vol. 587(7832), pages 157-161, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Andrew Muenks & Samantha Zepeda & Guangfeng Zhou & David Veesler & Frank DiMaio, 2023. "Automatic and accurate ligand structure determination guided by cryo-electron microscopy maps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Simon A. Fromm & Kate M. O’Connor & Michael Purdy & Pramod R. Bhatt & Gary Loughran & John F. Atkins & Ahmad Jomaa & Simone Mattei, 2023. "The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Rebeccah A. Warmack & Ailiena O. Maggiolo & Andres Orta & Belinda B. Wenke & James B. Howard & Douglas C. Rees, 2023. "Structural consequences of turnover-induced homocitrate loss in nitrogenase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Hongcheng Fan & Bo Wang & Yan Zhang & Yun Zhu & Bo Song & Haijin Xu & Yujia Zhai & Mingqiang Qiao & Fei Sun, 2021. "A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Jing Cheng & Tong Liu & Xin You & Fa Zhang & Sen-Fang Sui & Xiaohua Wan & Xinzheng Zhang, 2023. "Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Lars V. Bock & Helmut Grubmüller, 2022. "Effects of cryo-EM cooling on structural ensembles," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Austin Hsu & Qiming Duan & Daniel S. Day & Xin Luo & Sarah McMahon & Yu Huang & Zachary B. Feldman & Zhen Jiang & Tinghu Zhang & Yanke Liang & Michael Alexanian & Arun Padmanabhan & Jonathan D. Brown , 2022. "Targeting transcription in heart failure via CDK7/12/13 inhibition," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Roman I. Koning & Hildo Vader & Martijn Nugteren & Peter A. Grocutt & Wen Yang & Ludovic L. R. Renault & Abraham J. Koster & Arnold C. F. Kamp & Michael Schwertner, 2022. "Automated vitrification of cryo-EM samples with controllable sample thickness using suction and real-time optical inspection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Yang Ling & Tu Sun & Linshuo Guo & Xiaomeng Si & Yilan Jiang & Qing Zhang & Zhaoxi Chen & Osamu Terasaki & Yanhang Ma, 2022. "Atomic-level structural responsiveness to environmental conditions from 3D electron diffraction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Jieqiong Zhang & Zhenhua Hu & Hwa Hwa Chung & Yun Tian & Kah Weng Lau & Zheng Ser & Yan Ting Lim & Radoslaw M. Sobota & Hwei Fen Leong & Benjamin Jieming Chen & Clarisse Jingyi Yeo & Shawn Ying Xuan T, 2023. "Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    13. Tengfei Wang & Shuxiang Shi & Yuanyuan Shi & Peipei Jiang & Ganlu Hu & Qinying Ye & Zhan Shi & Kexin Yu & Chenguang Wang & Guoping Fan & Suwen Zhao & Hanhui Ma & Alex C. Y. Chang & Zhi Li & Qian Bian , 2023. "Chemical-induced phase transition and global conformational reorganization of chromatin," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Mitsuyoshi Kamba & Ryoga Shimizu & Kiyotaka Aikawa, 2023. "Nanoscale feedback control of six degrees of freedom of a near-sphere," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Radostin Danev & Matthew Belousoff & Yi-Lynn Liang & Xin Zhang & Fabian Eisenstein & Denise Wootten & Patrick M. Sexton, 2021. "Routine sub-2.5 Å cryo-EM structure determination of GPCRs," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Jiahua He & Tao Li & Sheng-You Huang, 2023. "Improvement of cryo-EM maps by simultaneous local and non-local deep learning," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Thibault Houles & Geneviève Lavoie & Sami Nourreddine & Winnie Cheung & Éric Vaillancourt-Jean & Célia M. Guérin & Mathieu Bouttier & Benoit Grondin & Sichun Lin & Marc K. Saba-El-Leil & Stephane Ange, 2022. "CDK12 is hyperactivated and a synthetic-lethal target in BRAF-mutated melanoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Jayden Sterling & Jennifer R. Baker & Adam McCluskey & Lenka Munoz, 2023. "Systematic literature review reveals suboptimal use of chemical probes in cell-based biomedical research," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Barbara Steurer & Roel C. Janssens & Marit E. Geijer & Fernando Aprile-Garcia & Bart Geverts & Arjan F. Theil & Barbara Hummel & Martin E. Royen & Bastiaan Evers & René Bernards & Adriaan B. Houtsmull, 2022. "DNA damage-induced transcription stress triggers the genome-wide degradation of promoter-bound Pol II," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46375-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.