IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45910-y.html
   My bibliography  Save this article

Endothelial cells regulate alveolar morphogenesis by constructing basement membranes acting as a scaffold for myofibroblasts

Author

Listed:
  • Haruko Watanabe-Takano

    (Nippon Medical School)

  • Katsuhiro Kato

    (Nagoya University)

  • Eri Oguri-Nakamura

    (Nippon Medical School)

  • Tomohiro Ishii

    (Nippon Medical School)

  • Koji Kobayashi

    (University of Tokyo)

  • Takahisa Murata

    (University of Tokyo)

  • Koichiro Tsujikawa

    (Nagoya University)

  • Takaki Miyata

    (Nagoya University)

  • Yoshiaki Kubota

    (Keio University School of Medicine)

  • Yasuyuki Hanada

    (Nagoya University
    University of Miyazaki)

  • Koichi Nishiyama

    (University of Miyazaki)

  • Tetsuro Watabe

    (Tokyo Medical and Dental University)

  • Reinhard Fässler

    (Max Planck Institute of Biochemistry)

  • Hirotaka Ishii

    (Nippon Medical School)

  • Naoki Mochizuki

    (National Cerebral and Cardiovascular Center Research Institute)

  • Shigetomo Fukuhara

    (Nippon Medical School)

Abstract

Alveologenesis is a spatially coordinated morphogenetic event, during which alveolar myofibroblasts surround the terminal sacs constructed by epithelial cells and endothelial cells (ECs), then contract to form secondary septa to generate alveoli in the lungs. Recent studies have demonstrated the important role of alveolar ECs in this morphogenetic event. However, the mechanisms underlying EC-mediated alveologenesis remain unknown. Herein, we show that ECs regulate alveologenesis by constructing basement membranes (BMs) acting as a scaffold for myofibroblasts to induce septa formation through activating mechanical signaling. Rap1, a small GTPase of the Ras superfamily, is known to stimulate integrin-mediated cell adhesions. EC-specific Rap1-deficient (Rap1iECKO) mice exhibit impaired septa formation and hypo-alveolarization due to the decreased mechanical signaling in myofibroblasts. In Rap1iECKO mice, ECs fail to stimulate integrin β1 to recruit Collagen type IV (Col-4) into BMs required for myofibroblast-mediated septa formation. Consistently, EC-specific integrin β1-deficient mice show hypo-alveolarization, defective mechanical signaling in myofibroblasts, and disorganized BMs. These data demonstrate that alveolar ECs promote integrin β1-mediated Col-4 recruitment in a Rap1-dependent manner, thereby constructing BMs acting as a scaffold for myofibroblasts to induce mechanical signal-mediated alveologenesis. Thus, this study unveils a mechanism of organ morphogenesis mediated by ECs through intrinsic functions.

Suggested Citation

  • Haruko Watanabe-Takano & Katsuhiro Kato & Eri Oguri-Nakamura & Tomohiro Ishii & Koji Kobayashi & Takahisa Murata & Koichiro Tsujikawa & Takaki Miyata & Yoshiaki Kubota & Yasuyuki Hanada & Koichi Nishi, 2024. "Endothelial cells regulate alveolar morphogenesis by constructing basement membranes acting as a scaffold for myofibroblasts," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45910-y
    DOI: 10.1038/s41467-024-45910-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45910-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45910-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christos Kyprianou & Neophytos Christodoulou & Russell S. Hamilton & Wallis Nahaboo & Diana Suarez Boomgaard & Gianluca Amadei & Isabelle Migeotte & Magdalena Zernicka-Goetz, 2020. "Basement membrane remodelling regulates mouse embryogenesis," Nature, Nature, vol. 582(7811), pages 253-258, June.
    2. Minzhe Guo & Yina Du & Jason J. Gokey & Samriddha Ray & Sheila M. Bell & Mike Adam & Parvathi Sudha & Anne Karina Perl & Hitesh Deshmukh & S. Steven Potter & Jeffrey A. Whitsett & Yan Xu, 2019. "Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    3. Dong-Yuan Chen & Justin Crest & Sebastian J. Streichan & David Bilder, 2019. "Extracellular matrix stiffness cues junctional remodeling for 3D tissue elongation," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    4. Saravana K. Ramasamy & Anjali P. Kusumbe & Lin Wang & Ralf H. Adams, 2014. "Endothelial Notch activity promotes angiogenesis and osteogenesis in bone," Nature, Nature, vol. 507(7492), pages 376-380, March.
    5. Katsuhiro Kato & Rodrigo Diéguez-Hurtado & Do Young Park & Seon Pyo Hong & Sakiko Kato-Azuma & Susanne Adams & Martin Stehling & Britta Trappmann & Jeffrey L. Wrana & Gou Young Koh & Ralf H. Adams, 2018. "Pulmonary pericytes regulate lung morphogenesis," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandra N. Rindone & Xiaonan Liu & Stephanie Farhat & Alexander Perdomo-Pantoja & Timothy F. Witham & Daniel L. Coutu & Mei Wan & Warren L. Grayson, 2021. "Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Maria Dzamukova & Tobias M. Brunner & Jadwiga Miotla-Zarebska & Frederik Heinrich & Laura Brylka & Mir-Farzin Mashreghi & Anjali Kusumbe & Ralf Kühn & Thorsten Schinke & Tonia L. Vincent & Max Löhning, 2022. "Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Till Fabian Mertens & Alina Tabea Liebheit & Johanna Ehl & Ralf Köhler & Asylkhan Rakhymzhan & Andrew Woehler & Lukas Katthän & Gernot Ebel & Wjatscheslaw Liublin & Ana Kasapi & Antigoni Triantafyllop, 2024. "MarShie: a clearing protocol for 3D analysis of single cells throughout the bone marrow at subcellular resolution," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Joschka Heil & Victor Olsavszky & Katrin Busch & Kay Klapproth & Carolina Torre & Carsten Sticht & Kajetan Sandorski & Johannes Hoffmann & Hiltrud Schönhaber & Johanna Zierow & Manuel Winkler & Christ, 2021. "Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Xue Gao & Sheng Wang & Yan-Fen Wang & Shuang Li & Shi-Xin Wu & Rong-Ge Yan & Yi-Wen Zhang & Rui-Dong Wan & Zhen He & Ren-De Song & Xin-Quan Zhao & Dong-Dong Wu & Qi-En Yang, 2022. "Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Julian C. Bahr & Xiao-Yan Li & Tamar Y. Feinberg & Long Jiang & Stephen J. Weiss, 2022. "Divergent regulation of basement membrane trafficking by human macrophages and cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Nicolas Verheyen & Astrid Fahrleitner-Pammer & Evgeny Belyavskiy & Martin R Gruebler & Hans Peter Dimai & Karin Amrein & Klemens Ablasser & Johann Martensen & Cristiana Catena & Elisabeth Pieske-Kraig, 2017. "Relationship between bone turnover and left ventricular function in primary hyperparathyroidism: The EPATH trial," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    9. Minzhe Guo & Michael P. Morley & Cheng Jiang & Yixin Wu & Guangyuan Li & Yina Du & Shuyang Zhao & Andrew Wagner & Adnan Cihan Cakar & Michal Kouril & Kang Jin & Nathan Gaddis & Joseph A. Kitzmiller & , 2023. "Guided construction of single cell reference for human and mouse lung," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Christopher W. Murray & Jennifer J. Brady & Mingqi Han & Hongchen Cai & Min K. Tsai & Sarah E. Pierce & Ran Cheng & Janos Demeter & David M. Feldser & Peter K. Jackson & David B. Shackelford & Monte M, 2022. "LKB1 drives stasis and C/EBP-mediated reprogramming to an alveolar type II fate in lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Guolun Wang & Bingqiang Wen & Zicheng Deng & Yufang Zhang & Olena A. Kolesnichenko & Vladimir Ustiyan & Arun Pradhan & Tanya V. Kalin & Vladimir V. Kalinichenko, 2022. "Endothelial progenitor cells stimulate neonatal lung angiogenesis through FOXF1-mediated activation of BMP9/ACVRL1 signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Yuta Ozaki & Koji Ohashi & Naoya Otaka & Hiroshi Kawanishi & Tomonobu Takikawa & Lixin Fang & Kunihiko Takahara & Minako Tatsumi & Sohta Ishihama & Mikito Takefuji & Katsuhiro Kato & Yuuki Shimizu & Y, 2023. "Myonectin protects against skeletal muscle dysfunction in male mice through activation of AMPK/PGC1α pathway," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Raymond K. H. Yip & Joel S. Rimes & Bianca D. Capaldo & François Vaillant & Kellie A. Mouchemore & Bhupinder Pal & Yunshun Chen & Elliot Surgenor & Andrew J. Murphy & Robin L. Anderson & Gordon K. Smy, 2021. "Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    14. Andrea Toth & Paranthaman Kannan & John Snowball & Matthew Kofron & Joseph A. Wayman & James P. Bridges & Emily R. Miraldi & Daniel Swarr & William J. Zacharias, 2023. "Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Julia Eckert & Benoît Ladoux & René-Marc Mège & Luca Giomi & Thomas Schmidt, 2023. "Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Haiqing Bai & Longlong Si & Amanda Jiang & Chaitra Belgur & Yunhao Zhai & Roberto Plebani & Crystal Yuri Oh & Melissa Rodas & Aditya Patil & Atiq Nurani & Sarah E. Gilpin & Rani K. Powers & Girija Goy, 2022. "Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Laetitia Préau & Anna Lischke & Melanie Merkel & Neslihan Oegel & Maria Weissenbruch & Andria Michael & Hongryeol Park & Dietmar Gradl & Christian Kupatt & Ferdinand Noble, 2024. "Parenchymal cues define Vegfa-driven venous angiogenesis by activating a sprouting competent venous endothelial subtype," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    18. Peng Liao & Long Chen & Hao Zhou & Jiong Mei & Ziming Chen & Bingqi Wang & Jerry Q. Feng & Guangyi Li & Sihan Tong & Jian Zhou & Siyuan Zhu & Yu Qian & Yao Zong & Weiguo Zou & Hao Li & Wenkan Zhang & , 2024. "Osteocyte mitochondria regulate angiogenesis of transcortical vessels," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45910-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.