IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45597-1.html
   My bibliography  Save this article

Symmetrically pulsating bubbles swim in an anisotropic fluid by nematodynamics

Author

Listed:
  • Sung-Jo Kim

    (Ulsan National Institute of Science and Technology
    Institute for Basic Science)

  • Žiga Kos

    (University of Ljubljana
    Jožef Stefan Institute
    Hiroshima University)

  • Eujin Um

    (Ulsan National Institute of Science and Technology)

  • Joonwoo Jeong

    (Ulsan National Institute of Science and Technology)

Abstract

Swimming in low-Reynolds-number fluids requires the breaking of time-reversal symmetry and centrosymmetry. Microswimmers, often with asymmetric shapes, exhibit nonreciprocal motions or exploit nonequilibrium processes to propel. The role of the surrounding fluid has also attracted attention because viscoelastic, non-Newtonian, and anisotropic properties of fluids matter in propulsion efficiency and navigation. Here, we experimentally demonstrate that anisotropic fluids, nematic liquid crystals (NLC), can make a pulsating spherical bubble swim despite its centrosymmetric shape and time-symmetric motion. The NLC breaks the centrosymmetry by a deformed nematic director field with a topological defect accompanying the bubble. The nematodynamics renders the nonreciprocity in the pulsation-induced fluid flow. We also report speed enhancement by confinement and the propulsion of another symmetry-broken bubble dressed by a bent disclination. Our experiments and theory propose another possible mechanism of moving bodies in complex fluids by spatiotemporal symmetry breaking.

Suggested Citation

  • Sung-Jo Kim & Žiga Kos & Eujin Um & Joonwoo Jeong, 2024. "Symmetrically pulsating bubbles swim in an anisotropic fluid by nematodynamics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45597-1
    DOI: 10.1038/s41467-024-45597-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45597-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45597-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oleg D. Lavrentovich & Israel Lazo & Oleg P. Pishnyak, 2010. "Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal," Nature, Nature, vol. 467(7318), pages 947-950, October.
    2. Tian Qiu & Tung-Chun Lee & Andrew G. Mark & Konstantin I. Morozov & Raphael Münster & Otto Mierka & Stefan Turek & Alexander M. Leshansky & Peer Fischer, 2014. "Swimming by reciprocal motion at low Reynolds number," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Huicheng & Wong, Teck Neng, 2018. "Induced-charge electro-osmosis in dielectric annuli," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 133-144.
    2. Ugur Bozuyuk & Amirreza Aghakhani & Yunus Alapan & Muhammad Yunusa & Paul Wrede & Metin Sitti, 2022. "Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Laliphat Manamanchaiyaporn & Tiantian Xu & Xinyu Wu, 2020. "An Optimal Design of an Electromagnetic Actuation System towards a Large Homogeneous Magnetic Field and Accessible Workspace for Magnetic Manipulation," Energies, MDPI, vol. 13(4), pages 1-24, February.
    4. Jakub Janiak & Yuyang Li & Yann Ferry & Alexander A. Doinikov & Daniel Ahmed, 2023. "Acoustic microbubble propulsion, train-like assembly and cargo transport," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45597-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.