IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44489-0.html
   My bibliography  Save this article

Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils

Author

Listed:
  • Kartikay Sharma

    (Ulm University)

  • Fabian Stockert

    (Ulm University)

  • Jayakrishna Shenoy

    (University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB)

  • Mélanie Berbon

    (University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB)

  • Muhammed Bilal Abdul-Shukkoor

    (University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB)

  • Birgit Habenstein

    (University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB)

  • Antoine Loquet

    (University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB)

  • Matthias Schmidt

    (Ulm University)

  • Marcus Fändrich

    (Ulm University)

Abstract

The transactive response DNA-binding protein-43 (TDP-43) is a multi-facet protein involved in phase separation, RNA-binding, and alternative splicing. In the context of neurodegenerative diseases, abnormal aggregation of TDP-43 has been linked to amyotrophic lateral sclerosis and frontotemporal lobar degeneration through the aggregation of its C-terminal domain. Here, we report a cryo-electron microscopy (cryo-EM)-based structural characterization of TDP-43 fibrils obtained from the full-length protein. We find that the fibrils are polymorphic and contain three different amyloid structures. The structures differ in the number and relative orientation of the protofilaments, although they share a similar fold containing an amyloid key motif. The observed fibril structures differ from previously described conformations of TDP-43 fibrils and help to better understand the structural landscape of the amyloid fibril structures derived from this protein.

Suggested Citation

  • Kartikay Sharma & Fabian Stockert & Jayakrishna Shenoy & Mélanie Berbon & Muhammed Bilal Abdul-Shukkoor & Birgit Habenstein & Antoine Loquet & Matthias Schmidt & Marcus Fändrich, 2024. "Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44489-0
    DOI: 10.1038/s41467-023-44489-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44489-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44489-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lynn Radamaker & Julian Baur & Stefanie Huhn & Christian Haupt & Ute Hegenbart & Stefan Schönland & Akanksha Bansal & Matthias Schmidt & Marcus Fändrich, 2021. "Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Akanksha Bansal & Matthias Schmidt & Matthies Rennegarbe & Christian Haupt & Falk Liberta & Sabrina Stecher & Ioana Puscalau-Girtu & Alexander Biedermann & Marcus Fändrich, 2021. "AA amyloid fibrils from diseased tissue are structurally different from in vitro formed SAA fibrils," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Falk Liberta & Sarah Loerch & Matthies Rennegarbe & Angelika Schierhorn & Per Westermark & Gunilla T. Westermark & Bouke P. C. Hazenberg & Nikolaus Grigorieff & Marcus Fändrich & Matthias Schmidt, 2019. "Cryo-EM fibril structures from systemic AA amyloidosis reveal the species complementarity of pathological amyloids," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Qiuye Li & W. Michael Babinchak & Witold K. Surewicz, 2021. "Cryo-EM structure of amyloid fibrils formed by the entire low complexity domain of TDP-43," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Sambhasan Banerjee & Julian Baur & Christoph Daniel & Peter Benedikt Pfeiffer & Manuel Hitzenberger & Lukas Kuhn & Sebastian Wiese & Johan Bijzet & Christian Haupt & Kerstin U. Amann & Martin Zacharia, 2022. "Amyloid fibril structure from the vascular variant of systemic AA amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Yang Shi & Wenjuan Zhang & Yang Yang & Alexey G. Murzin & Benjamin Falcon & Abhay Kotecha & Mike Beers & Airi Tarutani & Fuyuki Kametani & Holly J. Garringer & Ruben Vidal & Grace I. Hallinan & Tammar, 2021. "Structure-based classification of tauopathies," Nature, Nature, vol. 598(7880), pages 359-363, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binh An Nguyen & Virender Singh & Shumaila Afrin & Anna Yakubovska & Lanie Wang & Yasmin Ahmed & Rose Pedretti & Maria del Carmen Fernandez-Ramirez & Preeti Singh & Maja Pękała & Luis O. Cabrera Herna, 2024. "Structural polymorphism of amyloid fibrils in ATTR amyloidosis revealed by cryo-electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Martin Wilkinson & Rodrigo U. Gallardo & Roberto Maya Martinez & Nicolas Guthertz & Masatomo So & Liam D. Aubrey & Sheena E. Radford & Neil A. Ranson, 2023. "Disease-relevant β2-microglobulin variants share a common amyloid fold," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Maximilian Steinebrei & Julian Baur & Anaviggha Pradhan & Niklas Kupfer & Sebastian Wiese & Ute Hegenbart & Stefan O. Schönland & Matthias Schmidt & Marcus Fändrich, 2023. "Common transthyretin-derived amyloid fibril structures in patients with hereditary ATTR amyloidosis," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Sambhasan Banerjee & Julian Baur & Christoph Daniel & Peter Benedikt Pfeiffer & Manuel Hitzenberger & Lukas Kuhn & Sebastian Wiese & Johan Bijzet & Christian Haupt & Kerstin U. Amann & Martin Zacharia, 2022. "Amyloid fibril structure from the vascular variant of systemic AA amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Tim Schulte & Antonio Chaves-Sanjuan & Giulia Mazzini & Valentina Speranzini & Francesca Lavatelli & Filippo Ferri & Carlo Palizzotto & Maria Mazza & Paolo Milani & Mario Nuvolone & Anne-Cathrine Vogt, 2022. "Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Lynn Radamaker & Sara Karimi-Farsijani & Giada Andreotti & Julian Baur & Matthias Neumann & Sarah Schreiner & Natalie Berghaus & Raoul Motika & Christian Haupt & Paul Walther & Volker Schmidt & Stefan, 2021. "Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Nikolaos Louros & Meine Ramakers & Emiel Michiels & Katerina Konstantoulea & Chiara Morelli & Teresa Garcia & Nele Moonen & Sam D’Haeyer & Vera Goossens & Dietmar Rudolf Thal & Dominique Audenaert & F, 2022. "Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    8. Nicolai Franzmeier & Matthias Brendel & Leonie Beyer & Luna Slemann & Gabor G. Kovacs & Thomas Arzberger & Carolin Kurz & Gesine Respondek & Milica J. Lukic & Davina Biel & Anna Rubinski & Lukas Front, 2022. "Tau deposition patterns are associated with functional connectivity in primary tauopathies," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Li-Qiang Wang & Yeyang Ma & Han-Ye Yuan & Kun Zhao & Mu-Ya Zhang & Qiang Wang & Xi Huang & Wen-Chang Xu & Bin Dai & Jie Chen & Dan Li & Delin Zhang & Zhengzhi Wang & Liangyu Zou & Ping Yin & Cong Liu , 2022. "Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Inbal Maniv & Mahasen Sarji & Anwar Bdarneh & Alona Feldman & Roi Ankawa & Elle Koren & Inbar Magid-Gold & Noa Reis & Despina Soteriou & Shiran Salomon-Zimri & Tali Lavy & Ellina Kesselman & Naama Koi, 2023. "Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Benjamin C. Creekmore & Kathryn Kixmoeller & Ben E. Black & Edward B. Lee & Yi-Wei Chang, 2024. "Ultrastructure of human brain tissue vitrified from autopsy revealed by cryo-ET with cryo-plasma FIB milling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Nathalie Kyalu Ngoie Zola & Clémence Balty & Sébastien Pyr dit Ruys & Axelle A. T. Vanparys & Nicolas D. G. Huyghe & Gaëtan Herinckx & Manuel Johanns & Emilien Boyer & Pascal Kienlen-Campard & Mark H., 2023. "Specific post-translational modifications of soluble tau protein distinguishes Alzheimer’s disease and primary tauopathies," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Jinjian Hu & Wencheng Xia & Shuyi Zeng & Yeh-Jun Lim & Youqi Tao & Yunpeng Sun & Lang Zhao & Haosen Wang & Weidong Le & Dan Li & Shengnan Zhang & Cong Liu & Yan-Mei Li, 2024. "Phosphorylation and O-GlcNAcylation at the same α-synuclein site generate distinct fibril structures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Youqi Tao & Yunpeng Sun & Shiran Lv & Wencheng Xia & Kun Zhao & Qianhui Xu & Qinyue Zhao & Lin He & Weidong Le & Yong Wang & Cong Liu & Dan Li, 2022. "Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Gregory E. Merz & Matthew J. Chalkley & Sophia K. Tan & Eric Tse & Joanne Lee & Stanley B. Prusiner & Nick A. Paras & William F. DeGrado & Daniel R. Southworth, 2023. "Stacked binding of a PET ligand to Alzheimer’s tau paired helical filaments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Dhruva D. Dhavale & Alexander M. Barclay & Collin G. Borcik & Katherine Basore & Deborah A. Berthold & Isabelle R. Gordon & Jialu Liu & Moses H. Milchberg & Jennifer Y. O’Shea & Michael J. Rau & Zacha, 2024. "Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Itika Saha & Patricia Yuste-Checa & Miguel Silva Padilha & Qiang Guo & Roman Körner & Hauke Holthusen & Victoria A. Trinkaus & Irina Dudanova & Rubén Fernández-Busnadiego & Wolfgang Baumeister & David, 2023. "The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Irina Iakovleva & Michael Hall & Melanie Oelker & Linda Sandblad & Intissar Anan & A. Elisabeth Sauer-Eriksson, 2021. "Structural basis for transthyretin amyloid formation in vitreous body of the eye," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Luca Pinzi & Christian Conze & Nicolo Bisi & Gabriele Dalla Torre & Ahmed Soliman & Nanci Monteiro-Abreu & Nataliya I. Trushina & Andrea Krusenbaum & Maryam Khodaei Dolouei & Andrea Hellwig & Michael , 2024. "Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44489-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.