IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43365-1.html
   My bibliography  Save this article

Anomalous excitonic phase diagram in band-gap-tuned Ta2Ni(Se,S)5

Author

Listed:
  • Cheng Chen

    (University of Oxford
    Yale University)

  • Weichen Tang

    (University of California
    Lawrence Berkeley National Lab)

  • Xiang Chen

    (University of California
    Lawrence Berkeley National Lab)

  • Zhibo Kang

    (Yale University)

  • Shuhan Ding

    (Clemson University)

  • Kirsty Scott

    (Yale University)

  • Siqi Wang

    (Yale University)

  • Zhenglu Li

    (University of California
    Lawrence Berkeley National Lab
    University of Southern California)

  • Jacob P. C. Ruff

    (Cornell University)

  • Makoto Hashimoto

    (SLAC National Accelerator Laboratory)

  • Dong-Hui Lu

    (SLAC National Accelerator Laboratory)

  • Chris Jozwiak

    (Lawrence Berkeley National Laboratory)

  • Aaron Bostwick

    (Lawrence Berkeley National Laboratory)

  • Eli Rotenberg

    (Lawrence Berkeley National Laboratory)

  • Eduardo H. Silva Neto

    (Yale University)

  • Robert J. Birgeneau

    (University of California
    Lawrence Berkeley National Lab
    University of California)

  • Yulin Chen

    (University of Oxford)

  • Steven G. Louie

    (University of California
    Lawrence Berkeley National Lab)

  • Yao Wang

    (Clemson University
    Emory University)

  • Yu He

    (Yale University)

Abstract

During a band-gap-tuned semimetal-to-semiconductor transition, Coulomb attraction between electrons and holes can cause spontaneously formed excitons near the zero-band-gap point, or the Lifshitz transition point. This has become an important route to realize bulk excitonic insulators – an insulating ground state distinct from single-particle band insulators. How this route manifests from weak to strong coupling is not clear. In this work, using angle-resolved photoemission spectroscopy (ARPES) and high-resolution synchrotron x-ray diffraction (XRD), we investigate the broken symmetry state across the semimetal-to-semiconductor transition in a leading bulk excitonic insulator candidate system Ta2Ni(Se,S)5. A broken symmetry phase is found to be continuously suppressed from the semimetal side to the semiconductor side, contradicting the anticipated maximal excitonic instability around the Lifshitz transition. Bolstered by first-principles and model calculations, we find strong interband electron-phonon coupling to play a crucial role in the enhanced symmetry breaking on the semimetal side of the phase diagram. Our results not only provide insight into the longstanding debate of the nature of intertwined orders in Ta2NiSe5, but also establish a basis for exploring band-gap-tuned structural and electronic instabilities in strongly coupled systems.

Suggested Citation

  • Cheng Chen & Weichen Tang & Xiang Chen & Zhibo Kang & Shuhan Ding & Kirsty Scott & Siqi Wang & Zhenglu Li & Jacob P. C. Ruff & Makoto Hashimoto & Dong-Hui Lu & Chris Jozwiak & Aaron Bostwick & Eli Rot, 2023. "Anomalous excitonic phase diagram in band-gap-tuned Ta2Ni(Se,S)5," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43365-1
    DOI: 10.1038/s41467-023-43365-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43365-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43365-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hope M. Bretscher & Paolo Andrich & Prachi Telang & Anupam Singh & Luminita Harnagea & A. K. Sood & Akshay Rao, 2021. "Ultrafast melting and recovery of collective order in the excitonic insulator Ta2NiSe5," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Y. F. Lu & H. Kono & T. I. Larkin & A. W. Rost & T. Takayama & A. V. Boris & B. Keimer & H. Takagi, 2017. "Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. M. Yi & Y. Zhang & Z.-K. Liu & X. Ding & J.-H. Chu & A.F. Kemper & N. Plonka & B. Moritz & M. Hashimoto & S.-K. Mo & Z. Hussain & T.P. Devereaux & I.R. Fisher & H.H. Wen & Z.-X. Shen & D.H. Lu, 2014. "Dynamic competition between spin-density wave order and superconductivity in underdoped Ba1−xKxFe2As2," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. G. Mazzone & Y. Shen & H. Suwa & G. Fabbris & J. Yang & S.-S. Zhang & H. Miao & J. Sears & Ke Jia & Y. G. Shi & M. H. Upton & D. M. Casa & X. Liu & Jian Liu & C. D. Batista & M. P. M. Dean, 2022. "Antiferromagnetic excitonic insulator state in Sr3Ir2O7," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Akihiko Ikeda & Yasuhiro H. Matsuda & Keisuke Sato & Yuto Ishii & Hironobu Sawabe & Daisuke Nakamura & Shojiro Takeyama & Joji Nasu, 2023. "Signature of spin-triplet exciton condensations in LaCoO3 at ultrahigh magnetic fields up to 600 T," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. H. M. Yoo & M. Korkusinski & D. Miravet & K. W. Baldwin & K. West & L. Pfeiffer & P. Hawrylak & R. C. Ashoori, 2023. "Time, momentum, and energy resolved pump-probe tunneling spectroscopy of two-dimensional electron systems," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Matthew D. Watson & Alex Louat & Cephise Cacho & Sungkyun Choi & Young Hee Lee & Michael Neumann & Gideok Kim, 2023. "Spectral signatures of a unique charge density wave in Ta2NiSe7," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Mingxiu Liu & Jingxuan Wei & Liujian Qi & Junru An & Xingsi Liu & Yahui Li & Zhiming Shi & Dabing Li & Kostya S. Novoselov & Cheng-Wei Qiu & Shaojuan Li, 2024. "Photogating-assisted tunneling boosts the responsivity and speed of heterogeneous WSe2/Ta2NiSe5 photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Ruishi Qi & Andrew Y. Joe & Zuocheng Zhang & Yongxin Zeng & Tiancheng Zheng & Qixin Feng & Jingxu Xie & Emma Regan & Zheyu Lu & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Michael F. Cromm, 2023. "Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yanze Feng & Runkun Chen & Junbo He & Liujian Qi & Yanan Zhang & Tian Sun & Xudan Zhu & Weiming Liu & Weiliang Ma & Wanfu Shen & Chunguang Hu & Xiaojuan Sun & Dabing Li & Rongjun Zhang & Peining Li & , 2023. "Visible to mid-infrared giant in-plane optical anisotropy in ternary van der Waals crystals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43365-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.