Author
Listed:
- Mirko Gallo
(Sapienza University of Rome
University of Brighton)
- Francesco Magaletti
(University of Brighton)
- Anastasios Georgoulas
(University of Brighton)
- Marco Marengo
(University of Brighton
University of Pavia)
- Joel Coninck
(University of Brighton)
- Carlo Massimo Casciola
(Sapienza University of Rome)
Abstract
In this work, we present a dynamical theory of boiling based on fluctuating hydrodynamics and the diffuse interface approach. The model is able to describe boiling from the stochastic nucleation up to the macroscopic bubble dynamics. It covers, with a modest computational cost, the mesoscale area from nano to micrometers, where most of the controversial observations related to the phenomenon originate. In particular, the role of wettability in the macroscopic observables of boiling is elucidated. In addition, by comparing the ideal case of boiling on ultra-smooth surfaces with a chemically heterogeneous wall, our results will definitively shed light on the puzzling low onset temperatures measured in experiments. Sporadic nanometric spots of hydrophobic wettability will be shown to be enough to trigger the nucleation at low superheat, significantly reducing the temperature of boiling onset, in line with experimental results. The proposed mesoscale approach constitutes the missing link between macroscopic approaches and molecular dynamics simulations and will open a breakthrough pathway toward accurate understanding and prediction.
Suggested Citation
Mirko Gallo & Francesco Magaletti & Anastasios Georgoulas & Marco Marengo & Joel Coninck & Carlo Massimo Casciola, 2023.
"A nanoscale view of the origin of boiling and its dynamics,"
Nature Communications, Nature, vol. 14(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41959-3
DOI: 10.1038/s41467-023-41959-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41959-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.