IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41841-2.html
   My bibliography  Save this article

Orientation distributions of vacuum-deposited organic emitters revealed by single-molecule microscopy

Author

Listed:
  • Francisco Tenopala-Carmona

    (University of Cologne
    University of St Andrews)

  • Dirk Hertel

    (University of Cologne)

  • Sabina Hillebrandt

    (University of Cologne)

  • Andreas Mischok

    (University of Cologne)

  • Arko Graf

    (University of St Andrews)

  • Philipp Weitkamp

    (University of Cologne)

  • Klaus Meerholz

    (University of Cologne)

  • Malte C. Gather

    (University of Cologne
    University of St Andrews)

Abstract

The orientation of luminescent molecules in organic light-emitting diodes strongly influences device performance. However, our understanding of the factors controlling emitter orientation is limited as current measurements only provide ensemble-averaged orientation values. Here, we use single-molecule imaging to measure the transition dipole orientation of individual emitter molecules in a state-of-the-art thermally evaporated host and thereby obtain complete orientation distributions of the hyperfluorescence-terminal emitter C545T. We achieve this by realizing ultra-low doping concentrations (10−6 wt%) of C545T and minimising background levels to reliably measure its photoluminescence. This approach yields the orientation distributions of >1000 individual emitter molecules in a system relevant to vacuum-processed devices. Analysis of solution- and vacuum-processed systems reveals that the orientation distributions strongly depend on the nanoscale environment of the emitter. This work opens the door to attaining unprecedented information on the factors that determine emitter orientation in current and future material systems for organic light-emitting devices.

Suggested Citation

  • Francisco Tenopala-Carmona & Dirk Hertel & Sabina Hillebrandt & Andreas Mischok & Arko Graf & Philipp Weitkamp & Klaus Meerholz & Malte C. Gather, 2023. "Orientation distributions of vacuum-deposited organic emitters revealed by single-molecule microscopy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41841-2
    DOI: 10.1038/s41467-023-41841-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41841-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41841-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kensuke Kimura & Kuniyuki Miwa & Hiroshi Imada & Miyabi Imai-Imada & Shota Kawahara & Jun Takeya & Maki Kawai & Michael Galperin & Yousoo Kim, 2019. "Selective triplet exciton formation in a single molecule," Nature, Nature, vol. 570(7760), pages 210-213, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiří Doležal & Sofia Canola & Prokop Hapala & Rodrigo Cezar Campos Ferreira & Pablo Merino & Martin Švec, 2022. "Evidence of exciton-libron coupling in chirally adsorbed single molecules," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yang Luo & Fan-Fang Kong & Xiao-Jun Tian & Yun-Jie Yu & Shi-Hao Jing & Chao Zhang & Gong Chen & Yang Zhang & Yao Zhang & Xiao-Guang Li & Zhen-Yu Zhang & Zhen-Chao Dong, 2024. "Anomalously bright single-molecule upconversion electroluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Katharina Kaiser & Leonard-Alexander Lieske & Jascha Repp & Leo Gross, 2023. "Charge-state lifetimes of single molecules on few monolayers of NaCl," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Vibhuti Rai & Nico Balzer & Gabriel Derenbach & Christof Holzer & Marcel Mayor & Wulf Wulfhekel & Lukas Gerhard & Michal Valášek, 2023. "Hot luminescence from single-molecule chromophores electrically and mechanically self-decoupled by tripodal scaffolds," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41841-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.