IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41622-x.html
   My bibliography  Save this article

Synthesis of a covalent organic framework with hetero-environmental pores and its medicine co-delivery application

Author

Listed:
  • Wenyan Ji

    (CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
    Tianjin University)

  • Pai Zhang

    (CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology)

  • Guangyuan Feng

    (Tianjin University)

  • Yuan-Zhe Cheng

    (CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
    University of Chinese Academy of Sciences)

  • Tian-Xiong Wang

    (CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
    University of Chinese Academy of Sciences)

  • Daqiang Yuan

    (Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS))

  • Ruitao Cha

    (CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology)

  • Xuesong Ding

    (CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology)

  • Shengbin Lei

    (Tianjin University
    Tianjin University)

  • Bao-Hang Han

    (CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
    University of Chinese Academy of Sciences)

Abstract

The topology type and the functionalization of pores play an important role in regulating the performance of covalent organic frameworks. Herein, we designed and synthesized the covalent organic framework with hetero-environmental pores using predesigned asymmetrical dialdehyde monomer. According to the results of structural characterization, crystallinity investigation, and theoretical calculation, the hetero-environmental pores of the obtained framework are regarded as the alternant arrangement. The distinctive hetero pore structure leads the designed material to show more advantages as compared with control materials in loading both hydrophobic and hydrophilic antibiotics for wound healing. This dual-antibiotic strategy can expand the antibacterial range as compared with the single antibiotic one, and reduce the generation of drug resistance. In summary, this strategy for designing covalent organic frameworks with hetero-environmental pores can extend the structural variety and provide a pathway for improving the practical application performance of these materials.

Suggested Citation

  • Wenyan Ji & Pai Zhang & Guangyuan Feng & Yuan-Zhe Cheng & Tian-Xiong Wang & Daqiang Yuan & Ruitao Cha & Xuesong Ding & Shengbin Lei & Bao-Hang Han, 2023. "Synthesis of a covalent organic framework with hetero-environmental pores and its medicine co-delivery application," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41622-x
    DOI: 10.1038/s41467-023-41622-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41622-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41622-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tanmay Banerjee & Frederik Haase & Stefan Trenker & Bishnu P. Biswal & Gökcen Savasci & Viola Duppel & Igor Moudrakovski & Christian Ochsenfeld & Bettina V. Lotsch, 2019. "Sub-stoichiometric 2D covalent organic frameworks from tri- and tetratopic linkers," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Tanmay Banerjee & Frederik Haase & Stefan Trenker & Bishnu P. Biswal & Gökcen Savasci & Viola Duppel & Igor Moudrakovski & Christian Ochsenfeld & Bettina V. Lotsch, 2019. "Publisher Correction: Sub-stoichiometric 2D covalent organic frameworks from tri- and tetratopic linkers," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu-Yan Jiang & Zhi-Bei Zhou & Shi-Xian Gan & Ya Lu & Chao Liu & Qiao-Yan Qi & Jin Yao & Xin Zhao, 2024. "Creating amphiphilic porosity in two-dimensional covalent organic frameworks via steric-hindrance-mediated precision hydrophilic-hydrophobic microphase separation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Dongyang Zhu & Yifan Zhu & Yu Chen & Qianqian Yan & Han Wu & Chun-Yen Liu & Xu Wang & Lawrence B. Alemany & Guanhui Gao & Thomas P. Senftle & Yongwu Peng & Xiaowei Wu & Rafael Verduzco, 2023. "Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41622-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.