IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41043-w.html
   My bibliography  Save this article

Next generation synthetic memory via intercepting recombinase function

Author

Listed:
  • Andrew E. Short

    (School of Chemical and Biomolecular Engineering)

  • Dowan Kim

    (School of Chemical and Biomolecular Engineering)

  • Prasaad T. Milner

    (School of Chemical and Biomolecular Engineering)

  • Corey J. Wilson

    (School of Chemical and Biomolecular Engineering)

Abstract

Here we present a technology to facilitate synthetic memory in a living system via repurposing Transcriptional Programming (i.e., our decision-making technology) parts, to regulate (intercept) recombinase function post-translation. We show that interception synthetic memory can facilitate programmable loss-of-function via site-specific deletion, programmable gain-of-function by way of site-specific inversion, and synthetic memory operations with nested Boolean logical operations. We can expand interception synthetic memory capacity more than 5-fold for a single recombinase, with reconfiguration specificity for multiple sites in parallel. Interception synthetic memory is ~10-times faster than previous generations of recombinase-based memory. We posit that the faster recombination speed of our next-generation memory technology is due to the post-translational regulation of recombinase function. This iteration of synthetic memory is complementary to decision-making via Transcriptional Programming – thus can be used to develop intelligent synthetic biological systems for myriad applications.

Suggested Citation

  • Andrew E. Short & Dowan Kim & Prasaad T. Milner & Corey J. Wilson, 2023. "Next generation synthetic memory via intercepting recombinase function," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41043-w
    DOI: 10.1038/s41467-023-41043-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41043-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41043-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brian D. Huang & Thomas M. Groseclose & Corey J. Wilson, 2022. "Transcriptional programming in a Bacteroides consortium," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Benjamin H. Weinberg & Jang Hwan Cho & Yash Agarwal & N. T. Hang Pham & Leidy D. Caraballo & Maciej Walkosz & Charina Ortega & Micaela Trexler & Nathan Tague & Billy Law & William K. J. Benman & Justi, 2019. "High-performance chemical- and light-inducible recombinases in mammalian cells and mice," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Ronald E. Rondon & Thomas M. Groseclose & Andrew E. Short & Corey J. Wilson, 2019. "Transcriptional programming using engineered systems of transcription factors and genetic architectures," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Thomas M. Groseclose & Ronald E. Rondon & Zachary D. Herde & Carlos A. Aldrete & Corey J. Wilson, 2020. "Engineered systems of inducible anti-repressors for the next generation of biological programming," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian D. Huang & Dowan Kim & Yongjoon Yu & Corey J. Wilson, 2024. "Engineering intelligent chassis cells via recombinase-based MEMORY circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian D. Huang & Dowan Kim & Yongjoon Yu & Corey J. Wilson, 2024. "Engineering intelligent chassis cells via recombinase-based MEMORY circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Brian D. Huang & Thomas M. Groseclose & Corey J. Wilson, 2022. "Transcriptional programming in a Bacteroides consortium," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Nicole M. Wong & Elizabeth Frias & Frederic D. Sigoillot & Justin H. Letendre & Marc Hild & Wilson W. Wong, 2021. "Engineering digitizer circuits for chemical and genetic screens in human cells," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Michael B. Sheets & Nathan Tague & Mary J. Dunlop, 2023. "An optogenetic toolkit for light-inducible antibiotic resistance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Yage Ding & Cristina Tous & Jaehoon Choi & Jingyao Chen & Wilson W. Wong, 2024. "Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Charlotte Cautereels & Jolien Smets & Jonas De Saeger & Lloyd Cool & Yanmei Zhu & Anna Zimmermann & Jan Steensels & Anton Gorkovskiy & Thomas B. Jacobs & Kevin J. Verstrepen, 2024. "Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41043-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.