IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40920-8.html
   My bibliography  Save this article

Security of quantum key distribution from generalised entropy accumulation

Author

Listed:
  • Tony Metger

    (ETH Zürich)

  • Renato Renner

    (ETH Zürich)

Abstract

The goal of quantum key distribution (QKD) is to establish a secure key between two parties connected by an insecure quantum channel. To use a QKD protocol in practice, one has to prove that a finite size key is secure against general attacks: no matter the adversary’s attack, they cannot gain useful information about the key. A much simpler task is to prove security against collective attacks, where the adversary is assumed to behave identically and independently in each round. In this work, we provide a formal framework for general QKD protocols and show that for any protocol that can be expressed in this framework, security against general attacks reduces to security against collective attacks, which in turn reduces to a numerical computation. Our proof relies on a recently developed information-theoretic tool called generalised entropy accumulation and can handle generic prepare-and-measure protocols directly without switching to an entanglement-based version.

Suggested Citation

  • Tony Metger & Renato Renner, 2023. "Security of quantum key distribution from generalised entropy accumulation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40920-8
    DOI: 10.1038/s41467-023-40920-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40920-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40920-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick J. Coles & Eric M. Metodiev & Norbert Lütkenhaus, 2016. "Numerical approach for unstructured quantum key distribution," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40920-8. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.