IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40790-0.html
   My bibliography  Save this article

CRUSTY: a versatile web platform for the rapid analysis and visualization of high-dimensional flow cytometry data

Author

Listed:
  • Simone Puccio

    (IRCCS Humanitas Research Hospital
    UoS Milan, National Research Council)

  • Giorgio Grillo

    (National Research Council)

  • Giorgia Alvisi

    (IRCCS Humanitas Research Hospital)

  • Caterina Scirgolea

    (IRCCS Humanitas Research Hospital)

  • Giovanni Galletti

    (IRCCS Humanitas Research Hospital
    University of California San Diego)

  • Emilia Maria Cristina Mazza

    (IRCCS Humanitas Research Hospital)

  • Arianna Consiglio

    (National Research Council)

  • Gabriele De Simone

    (Flow Cytometry Core, IRCCS Humanitas Research Hospital)

  • Flavio Licciulli

    (National Research Council)

  • Enrico Lugli

    (IRCCS Humanitas Research Hospital)

Abstract

Flow cytometry (FCM) can investigate dozens of parameters from millions of cells and hundreds of specimens in a short time and at a reasonable cost, but the amount of data that is generated is considerable. Computational approaches are useful to identify novel subpopulations and molecular biomarkers, but generally require deep expertize in bioinformatics and the use of different platforms. To overcome these limitations, we introduce CRUSTY, an interactive, user-friendly webtool incorporating the most popular algorithms for FCM data analysis, and capable of visualizing graphical and tabular results and automatically generating publication-quality figures within minutes. CRUSTY also hosts an interactive interface for the exploration of results in real time. Thus, CRUSTY enables a large number of users to mine complex datasets and reduce the time required for data exploration and interpretation. CRUSTY is accessible at https://crusty.humanitas.it/ .

Suggested Citation

  • Simone Puccio & Giorgio Grillo & Giorgia Alvisi & Caterina Scirgolea & Giovanni Galletti & Emilia Maria Cristina Mazza & Arianna Consiglio & Gabriele De Simone & Flavio Licciulli & Enrico Lugli, 2023. "CRUSTY: a versatile web platform for the rapid analysis and visualization of high-dimensional flow cytometry data," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40790-0
    DOI: 10.1038/s41467-023-40790-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40790-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40790-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sara Biasi & Lara Gibellini & Domenico Lo Tartaro & Simone Puccio & Claudio Rabacchi & Emilia M. C. Mazza & Jolanda Brummelman & Brandon Williams & Kelly Kaihara & Mattia Forcato & Silvio Bicciato & M, 2021. "Circulating mucosal-associated invariant T cells identify patients responding to anti-PD-1 therapy," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Shobana V. Stassen & Gwinky G. K. Yip & Kenneth K. Y. Wong & Joshua W. K. Ho & Kevin K. Tsia, 2021. "Generalized and scalable trajectory inference in single-cell omics data with VIA," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Hao Chen & Mai Chan Lau & Michael Thomas Wong & Evan W Newell & Michael Poidinger & Jinmiao Chen, 2016. "Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.
    4. Christina Bligaard Pedersen & Søren Helweg Dam & Mike Bogetofte Barnkob & Michael D. Leipold & Noelia Purroy & Laura Z. Rassenti & Thomas J. Kipps & Jennifer Nguyen & James Arthur Lederer & Satyen Har, 2022. "cyCombine allows for robust integration of single-cell cytometry datasets within and across technologies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Wei Chou & Chia-Nung Hung & Cheryl Hsiang-Ling Chiu & Xi Tan & Meizhen Chen & Chien-Chin Chen & Moawiz Saeed & Che-Wei Hsu & Michael A. Liss & Chiou-Miin Wang & Zhao Lai & Nathaniel Alvarez & Paw, 2023. "Phagocytosis-initiated tumor hybrid cells acquire a c-Myc-mediated quasi-polarization state for immunoevasion and distant dissemination," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Dehua Peng & Zhipeng Gui & Dehe Wang & Yuncheng Ma & Zichen Huang & Yu Zhou & Huayi Wu, 2022. "Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Ross J Burton & Raya Ahmed & Simone M Cuff & Sarah Baker & Andreas Artemiou & Matthias Eberl, 2021. "CytoPy: An autonomous cytometry analysis framework," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-21, June.
    4. Chuan Shen & Yiyang Li & Boqian Wang & Zhipeng Zong & Tianfei Lu & Nokuzola Maboyi & Yuxiao Deng & Yongbing Qian & Jianjun Zhang & Xianting Ding & Qiang Xia, 2022. "HTLV-1 infection of donor-derived T cells might promote acute graft-versus-host disease following liver transplantation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Eddie A. James & V. Michael Holers & Radhika Iyer & E. Barton Prideaux & Navin L. Rao & Cliff Rims & Virginia S. Muir & Sylvia E. Posso & Michelle S. Bloom & Amin Zia & Serra E. Elliott & Julia Z. Ada, 2023. "Multifaceted immune dysregulation characterizes individuals at-risk for rheumatoid arthritis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Daniel Haensel & Bence Daniel & Sadhana Gaddam & Cory Pan & Tania Fabo & Jeremy Bjelajac & Anna R. Jussila & Fernanda Gonzalez & Nancy Yanzhe Li & Yun Chen & JinChao Hou & Tiffany Patel & Sumaira Aasi, 2023. "Skin basal cell carcinomas assemble a pro-tumorigenic spatially organized and self-propagating Trem2+ myeloid niche," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Alexander H. Lee & Lu Sun & Aaron Y. Mochizuki & Jeremy G. Reynoso & Joey Orpilla & Frances Chow & Jenny C. Kienzler & Richard G. Everson & David A. Nathanson & Steven J. Bensinger & Linda M. Liau & T, 2021. "Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. Jolene S. Ranek & Wayne Stallaert & J. Justin Milner & Margaret Redick & Samuel C. Wolff & Adriana S. Beltran & Natalie Stanley & Jeremy E. Purvis, 2024. "DELVE: feature selection for preserving biological trajectories in single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    9. Eva C. Freckmann & Emma Sandilands & Erin Cumming & Matthew Neilson & Alvaro Román-Fernández & Konstantina Nikolatou & Marisa Nacke & Tamsin R. M. Lannagan & Ann Hedley & David Strachan & Mark Salji &, 2022. "Traject3d allows label-free identification of distinct co-occurring phenotypes within 3D culture by live imaging," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40790-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.