IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40736-6.html
   My bibliography  Save this article

Crystal structures of MHC class I complexes reveal the elusive intermediate conformations explored during peptide editing

Author

Listed:
  • Lenong Li

    (University of Illinois)

  • Xubiao Peng

    (School of Physics, Beijing Institute of Technology)

  • Mansoor Batliwala

    (University of Illinois)

  • Marlene Bouvier

    (University of Illinois)

Abstract

Studies have suggested that MHC class I (MHC I) molecules fluctuate rapidly between numerous conformational states and these motions support peptide sampling. To date, MHC I intermediates are largely uncharacterized experimentally and remain elusive. Here, we present x-ray crystal structures of HLA-B8 loaded with 20mer peptides that show pronounced distortions at the N-terminus of the groove. Long stretches of N-terminal amino acid residues are missing in the electron density maps creating an open-ended groove. Our structures also reveal highly unusual features in MHC I-peptide interaction at the N-terminus of the groove. Molecular dynamics simulations indicate that the complexes have varying degrees of conformational flexibility in a manner consistent with the structures. We suggest that our structures have captured the remarkable molecular dynamics of MHC I-peptide interaction. The visualization of peptide-dependent conformational motions in MHC I is a major step forward in our conceptual understanding of dynamics in high-affinity peptide selection.

Suggested Citation

  • Lenong Li & Xubiao Peng & Mansoor Batliwala & Marlene Bouvier, 2023. "Crystal structures of MHC class I complexes reveal the elusive intermediate conformations explored during peptide editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40736-6
    DOI: 10.1038/s41467-023-40736-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40736-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40736-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Domnick & Christian Winter & Lukas Sušac & Leon Hennecke & Mario Hensen & Nicole Zitzmann & Simon Trowitzsch & Christoph Thomas & Robert Tampé, 2022. "Molecular basis of MHC I quality control in the peptide loading complex," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Andreas Blees & Dovile Januliene & Tommy Hofmann & Nicole Koller & Carla Schmidt & Simon Trowitzsch & Arne Moeller & Robert Tampé, 2017. "Structure of the human MHC-I peptide-loading complex," Nature, Nature, vol. 551(7681), pages 525-528, November.
    3. Raghavendra Anjanappa & Maria Garcia-Alai & Janine-Denise Kopicki & Julia Lockhauserbäumer & Mohamed Aboelmagd & Janina Hinrichs & Ioana Maria Nemtanu & Charlotte Uetrecht & Martin Zacharias & Sebasti, 2020. "Structures of peptide-free and partially loaded MHC class I molecules reveal mechanisms of peptide selection," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew C. McShan & David Flores-Solis & Yi Sun & Samuel E. Garfinkle & Jugmohit S. Toor & Michael C. Young & Nikolaos G. Sgourakis, 2023. "Conformational plasticity of RAS Q61 family of neoepitopes results in distinct features for targeted recognition," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Jiansheng Jiang & Daniel K. Taylor & Ellen J. Kim & Lisa F. Boyd & Javeed Ahmad & Michael G. Mage & Hau V. Truong & Claire H. Woodward & Nikolaos G. Sgourakis & Peter Cresswell & David H. Margulies & , 2022. "Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Alexander Domnick & Christian Winter & Lukas Sušac & Leon Hennecke & Mario Hensen & Nicole Zitzmann & Simon Trowitzsch & Christoph Thomas & Robert Tampé, 2022. "Molecular basis of MHC I quality control in the peptide loading complex," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xin Lei & Indu Khatri & Tom Wit & Iris Rink & Marja Nieuwland & Ron Kerkhoven & Hans Eenennaam & Chong Sun & Abhishek D. Garg & Jannie Borst & Yanling Xiao, 2023. "CD4+ helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Ines Katharina Müller & Christian Winter & Christoph Thomas & Robbert M. Spaapen & Simon Trowitzsch & Robert Tampé, 2022. "Structure of an MHC I–tapasin–ERp57 editing complex defines chaperone promiscuity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40736-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.