IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40017-2.html
   My bibliography  Save this article

Versatile synthesis of metal-compound based mesoporous Janus nanoparticles

Author

Listed:
  • Yan Yu

    (Fudan University)

  • Runfeng Lin

    (Fudan University)

  • Hongyue Yu

    (Fudan University)

  • Minchao Liu

    (Fudan University)

  • Enyun Xing

    (Fudan University)

  • Wenxing Wang

    (Fudan University)

  • Fan Zhang

    (Fudan University)

  • Dongyuan Zhao

    (Fudan University)

  • Xiaomin Li

    (Fudan University)

Abstract

The construction of mesoporous Janus nanoparticles (mJNPs) with controllable components is of great significance for the development of sophisticated nanomaterials with synergistically enhanced functionalities and applications. However, the compositions of reported mJNPs are mainly the functionally inert SiO2 and polymers. The universal synthesis of metal-compound based mJNPs with abundant functionalities is urgently desired, but remains a substantial challenge. Herein, we present a hydrophilicity mediated interfacial selective assembly strategy for the versatile synthesis of metal-compound based mJNPs. Starting from the developed silica-based mJNPs with anisotropic dual-surface of hydrophilic SiO2 and hydrophobic organosilica, metal precursor can selectively deposit onto the hydrophilic SiO2 subunit to form the metal-compound based mJNPs. This method shows good universality and can be used for the synthesis of more than 20 kinds of metal-compound based mJNPs, including alkali-earth metal compounds, transition metal compounds, rare-earth metal compounds etc. Besides, the composition of the metal-compound subunit can be well tuned from single to multiple metal elements, even high-entropy complexes. We believe that the synthesis method and obtained new members of mJNPs provide a very broad platform for the construction and application of mJNPs with rational designed functions and structures.

Suggested Citation

  • Yan Yu & Runfeng Lin & Hongyue Yu & Minchao Liu & Enyun Xing & Wenxing Wang & Fan Zhang & Dongyuan Zhao & Xiaomin Li, 2023. "Versatile synthesis of metal-compound based mesoporous Janus nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40017-2
    DOI: 10.1038/s41467-023-40017-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40017-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40017-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hanumantha Rao Vutukuri & Masoud Hoore & Clara Abaurrea-Velasco & Lennard Buren & Alessandro Dutto & Thorsten Auth & Dmitry A. Fedosov & Gerhard Gompper & Jan Vermant, 2020. "Active particles induce large shape deformations in giant lipid vesicles," Nature, Nature, vol. 586(7827), pages 52-56, October.
    2. Tiancong Zhao & Liang Chen & Peiyuan Wang & Benhao Li & Runfeng Lin & Areej Abdulkareem Al-Khalaf & Wael N. Hozzein & Fan Zhang & Xiaomin Li & Dongyuan Zhao, 2019. "Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weria Pezeshkian & John H. Ipsen, 2024. "Mesoscale simulation of biomembranes with FreeDTS," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Matthew S. E. Peterson & Aparna Baskaran & Michael F. Hagan, 2021. "Vesicle shape transformations driven by confined active filaments," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Jens Grauer & Falko Schmidt & Jesús Pineda & Benjamin Midtvedt & Hartmut Löwen & Giovanni Volpe & Benno Liebchen, 2021. "Active droploids," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Yuzhu Ma & Hongjin Zhang & Runfeng Lin & Yan Ai & Kun Lan & Linlin Duan & Wenyao Chen & Xuezhi Duan & Bing Ma & Changyao Wang & Xiaomin Li & Dongyuan Zhao, 2022. "Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. A. Tiribocchi & M. Durve & M. Lauricella & A. Montessori & D. Marenduzzo & S. Succi, 2023. "The crucial role of adhesion in the transmigration of active droplets through interstitial orifices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40017-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.