IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39827-1.html
   My bibliography  Save this article

Kondo interaction in FeTe and its potential role in the magnetic order

Author

Listed:
  • Younsik Kim

    (Institute for Basic Science
    Seoul National University)

  • Min-Seok Kim

    (DGIST)

  • Dongwook Kim

    (Pohang University of Science and Technology (POSTECH))

  • Minjae Kim

    (Korea Institute for Advanced Study)

  • Minsoo Kim

    (Institute for Basic Science
    Seoul National University)

  • Cheng-Maw Cheng

    (National Synchrotron Radiation Research Center)

  • Joonyoung Choi

    (Kyungpook National University)

  • Saegyeol Jung

    (Institute for Basic Science
    Seoul National University)

  • Donghui Lu

    (SLAC National Accelerator Laboratory)

  • Jong Hyuk Kim

    (Yonsei University)

  • Soohyun Cho

    (Chinese Academy of Sciences)

  • Dongjoon Song

    (Institute for Basic Science
    Seoul National University)

  • Dongjin Oh

    (Institute for Basic Science
    Seoul National University
    Massachusetts Institute of Technology)

  • Li Yu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

  • Young Jai Choi

    (Yonsei University)

  • Hyeong-Do Kim

    (Pohang Accelerator Laboratory)

  • Jung Hoon Han

    (Sungkyunkwan University)

  • Younjung Jo

    (Kyungpook National University)

  • Ji Hoon Shim

    (Pohang University of Science and Technology (POSTECH))

  • Jungpil Seo

    (DGIST)

  • Soonsang Huh

    (Institute for Basic Science
    Seoul National University)

  • Changyoung Kim

    (Institute for Basic Science
    Seoul National University)

Abstract

Finding d-electron heavy fermion states has been an important topic as the diversity in d-electron materials can lead to many exotic Kondo effect-related phenomena or new states of matter such as correlation-driven topological Kondo insulator. Yet, obtaining direct spectroscopic evidence for a d-electron heavy fermion system has been elusive to date. Here, we report the observation of Kondo lattice behavior in an antiferromagnetic metal, FeTe, via angle-resolved photoemission spectroscopy, scanning tunneling spectroscopy and transport property measurements. The Kondo lattice behavior is represented by the emergence of a sharp quasiparticle and Fano-type tunneling spectra at low temperatures. The transport property measurements confirm the low-temperature Fermi liquid behavior and reveal successive coherent-incoherent crossover upon increasing temperature. We interpret the Kondo lattice behavior as a result of hybridization between localized Fe 3dxy and itinerant Te 5pz orbitals. Our observations strongly suggest unusual cooperation between Kondo lattice behavior and long-range magnetic order.

Suggested Citation

  • Younsik Kim & Min-Seok Kim & Dongwook Kim & Minjae Kim & Minsoo Kim & Cheng-Maw Cheng & Joonyoung Choi & Saegyeol Jung & Donghui Lu & Jong Hyuk Kim & Soohyun Cho & Dongjoon Song & Dongjin Oh & Li Yu &, 2023. "Kondo interaction in FeTe and its potential role in the magnetic order," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39827-1
    DOI: 10.1038/s41467-023-39827-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39827-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39827-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Patil & A. Generalov & M. Güttler & P. Kushwaha & A. Chikina & K. Kummer & T. C. Rödel & A. F. Santander-Syro & N. Caroca-Canales & C. Geibel & S. Danzenbächer & Yu. Kucherenko & C. Laubschat & J. , 2016. "ARPES view on surface and bulk hybridization phenomena in the antiferromagnetic Kondo lattice CeRh2Si2," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    2. A. P. Ramirez & R. J. Cava & J. Krajewski, 1997. "Colossal magnetoresistance in Cr-based chalcogenide spinels," Nature, Nature, vol. 386(6621), pages 156-159, March.
    3. N. D. Mathur & F. M. Grosche & S. R. Julian & I. R. Walker & D. M. Freye & R. K. W. Haselwimmer & G. G. Lonzarich, 1998. "Magnetically mediated superconductivity in heavy fermion compounds," Nature, Nature, vol. 394(6688), pages 39-43, July.
    4. M. Yi & Z-K Liu & Y. Zhang & R. Yu & J.-X. Zhu & J.J. Lee & R.G. Moore & F.T. Schmitt & W. Li & S.C. Riggs & J.-H. Chu & B. Lv & J. Hu & M. Hashimoto & S.-K. Mo & Z. Hussain & Z.Q. Mao & C.W. Chu & I., 2015. "Observation of universal strong orbital-dependent correlation effects in iron chalcogenides," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    5. P. Monthoux & D. Pines & G. G. Lonzarich, 2007. "Superconductivity without phonons," Nature, Nature, vol. 450(7173), pages 1177-1183, December.
    6. L. Jiao & S. Rößler & D. J. Kim & L. H. Tjeng & Z. Fisk & F. Steglich & S. Wirth, 2016. "Additional energy scale in SmB6 at low-temperature," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Saizheng Cao & Chenchao Xu & Hiroshi Fukui & Taishun Manjo & Ying Dong & Ming Shi & Yang Liu & Chao Cao & Yu Song, 2023. "Competing charge-density wave instabilities in the kagome metal ScV6Sn6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jean-Yves Fortin & Pierrick Lample, 2021. "Itinerant fermions on dilute frustrated Ising lattices," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.
    4. A. G. Eaton & T. I. Weinberger & N. J. M. Popiel & Z. Wu & A. J. Hickey & A. Cabala & J. Pospíšil & J. Prokleška & T. Haidamak & G. Bastien & P. Opletal & H. Sakai & Y. Haga & R. Nowell & S. M. Benjam, 2024. "Quasi-2D Fermi surface in the anomalous superconductor UTe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Kitae Eom & Bongwook Chung & Sehoon Oh & Hua Zhou & Jinsol Seo & Sang Ho Oh & Jinhyuk Jang & Si-Young Choi & Minsu Choi & Ilwan Seo & Yun Sang Lee & Youngmin Kim & Hyungwoo Lee & Jung-Woo Lee & Kyoung, 2024. "Surface triggered stabilization of metastable charge-ordered phase in SrTiO3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yuanhe Song & Zheng Chen & Qinghua Zhang & Haichao Xu & Xia Lou & Xiaoyang Chen & Xiaofeng Xu & Xuetao Zhu & Ran Tao & Tianlun Yu & Hao Ru & Yihua Wang & Tong Zhang & Jiandong Guo & Lin Gu & Yanwu Xie, 2021. "High temperature superconductivity at FeSe/LaFeO3 interface," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. M. C. Rahn & K. Kummer & A. Hariki & K.-H. Ahn & J. Kuneš & A. Amorese & J. D. Denlinger & D.-H. Lu & M. Hashimoto & E. Rienks & M. Valvidares & F. Haslbeck & D. D. Byler & K. J. McClellan & E. D. Bau, 2022. "Kondo quasiparticle dynamics observed by resonant inelastic x-ray scattering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. W. Simeth & Z. Wang & E. A. Ghioldi & D. M. Fobes & A. Podlesnyak & N. H. Sung & E. D. Bauer & J. Lass & S. Flury & J. Vonka & D. G. Mazzone & C. Niedermayer & Yusuke Nomura & Ryotaro Arita & C. D. Ba, 2023. "A microscopic Kondo lattice model for the heavy fermion antiferromagnet CeIn3," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39827-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.