IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39773-y.html
   My bibliography  Save this article

Molecular basis and design principles of switchable front-rear polarity and directional migration in Myxococcus xanthus

Author

Listed:
  • Luís António Menezes Carreira

    (Max Planck Institute for Terrestrial Microbiology)

  • Dobromir Szadkowski

    (Max Planck Institute for Terrestrial Microbiology)

  • Stefano Lometto

    (Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology
    Philipps University)

  • Georg. K. A. Hochberg

    (Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology
    Philipps University)

  • Lotte Søgaard-Andersen

    (Max Planck Institute for Terrestrial Microbiology)

Abstract

During cell migration, front-rear polarity is spatiotemporally regulated; however, the underlying design of regulatory interactions varies. In rod-shaped Myxococcus xanthus cells, a spatial toggle switch dynamically regulates front-rear polarity. The polarity module establishes front-rear polarity by guaranteeing front pole-localization of the small GTPase MglA. Conversely, the Frz chemosensory system, by acting on the polarity module, causes polarity inversions. MglA localization depends on the RomR/RomX GEF and MglB/RomY GAP complexes that localize asymmetrically to the poles by unknown mechanisms. Here, we show that RomR and the MglB and MglC roadblock domain proteins generate a positive feedback by forming a RomR/MglC/MglB complex, thereby establishing the rear pole with high GAP activity that is non-permissive to MglA. MglA at the front engages in negative feedback that breaks the RomR/MglC/MglB positive feedback allosterically, thus ensuring low GAP activity at this pole. These findings unravel the design principles of a system for switchable front-rear polarity.

Suggested Citation

  • Luís António Menezes Carreira & Dobromir Szadkowski & Stefano Lometto & Georg. K. A. Hochberg & Lotte Søgaard-Andersen, 2023. "Molecular basis and design principles of switchable front-rear polarity and directional migration in Myxococcus xanthus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39773-y
    DOI: 10.1038/s41467-023-39773-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39773-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39773-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    2. Adar Sonn-Segev & Katarina Belacic & Tatyana Bodrug & Gavin Young & Ryan T. VanderLinden & Brenda A. Schulman & Johannes Schimpf & Thorsten Friedrich & Phat Vinh Dip & Thomas U. Schwartz & Benedikt Ba, 2020. "Quantifying the heterogeneity of macromolecular machines by mass photometry," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Luís António Menezes Carreira & Filipe Tostevin & Ulrich Gerland & Lotte Søgaard-Andersen, 2020. "Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity," PLOS Genetics, Public Library of Science, vol. 16(6), pages 1-30, June.
    4. Sandrine Etienne-Manneville & Alan Hall, 2002. "Rho GTPases in cell biology," Nature, Nature, vol. 420(6916), pages 629-635, December.
    5. Anja Spang & Jimmy H. Saw & Steffen L. Jørgensen & Katarzyna Zaremba-Niedzwiedzka & Joran Martijn & Anders E. Lind & Roel van Eijk & Christa Schleper & Lionel Guy & Thijs J. G. Ettema, 2015. "Complex archaea that bridge the gap between prokaryotes and eukaryotes," Nature, Nature, vol. 521(7551), pages 173-179, May.
    6. Christian Galicia & Sébastien Lhospice & Paloma Fernández Varela & Stefano Trapani & Wenhua Zhang & Jorge Navaza & Julien Herrou & Tâm Mignot & Jacqueline Cherfils, 2019. "MglA functions as a three-state GTPase to control movement reversals of Myxococcus xanthus," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonardo Betancurt-Anzola & Markel Martínez-Carranza & Marc Delarue & Kelly M. Zatopek & Andrew F. Gardner & Ludovic Sauguet, 2023. "Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Gabriela Casanova-Sepúlveda & Joel A. Sexton & Benjamin E. Turk & Titus J. Boggon, 2023. "Autoregulation of the LIM kinases by their PDZ domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Clément Madru & Markel Martínez-Carranza & Sébastien Laurent & Alessandra C. Alberti & Maelenn Chevreuil & Bertrand Raynal & Ahmed Haouz & Rémy A. Meur & Marc Delarue & Ghislaine Henneke & Didier Flam, 2023. "DNA-binding mechanism and evolution of replication protein A," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Xiuling Wu & Yanhe Zhao & Hong Zhang & Wendi Yang & Jinbo Yang & Lifang Sun & Meiqin Jiang & Qin Wang & Qianchao Wang & Xianren Ye & Xuewu Zhang & Yunkun Wu, 2023. "Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. John C. K. Wang & Hannah T. Baddock & Amirhossein Mafi & Ian T. Foe & Matthew Bratkowski & Ting-Yu Lin & Zena D. Jensvold & Magdalena Preciado López & David Stokoe & Dan Eaton & Qi Hao & Aaron H. Nile, 2024. "Structure of the p53 degradation complex from HPV16," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Marios G. Koliopoulos & Reyhan Muhammad & Theodoros I. Roumeliotis & Fabienne Beuron & Jyoti S. Choudhary & Claudio Alfieri, 2022. "Structure of a nucleosome-bound MuvB transcription factor complex reveals DNA remodelling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Tomoyuki Hatano & Saravanan Palani & Dimitra Papatziamou & Ralf Salzer & Diorge P. Souza & Daniel Tamarit & Mehul Makwana & Antonia Potter & Alexandra Haig & Wenjue Xu & David Townsend & David Rochest, 2022. "Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Zheng Shen & Daxiao Sun & Adriana Savastano & Sára Joana Varga & Maria-Sol Cima-Omori & Stefan Becker & Alf Honigmann & Markus Zweckstetter, 2023. "Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    15. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39773-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.