IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39546-7.html
   My bibliography  Save this article

Closed-loop brain stimulation augments fear extinction in male rats

Author

Listed:
  • Rodrigo Ordoñez Sierra

    (University of Szeged)

  • Lizeth Katherine Pedraza

    (University of Szeged)

  • Lívia Barcsai

    (University of Szeged
    University of Szeged
    Neunos Inc)

  • Andrea Pejin

    (University of Szeged
    University of Szeged
    Neunos Inc)

  • Qun Li

    (University of Szeged)

  • Gábor Kozák

    (University of Szeged)

  • Yuichi Takeuchi

    (University of Szeged
    Hokkaido University)

  • Anett J. Nagy

    (University of Szeged
    University of Szeged
    Neunos Inc)

  • Magor L. Lőrincz

    (University of Szeged
    Faculty of Sciences University of Szeged
    Cardiff University)

  • Orrin Devinsky

    (NYU Grossman School of Medicine)

  • György Buzsáki

    (New York University
    New York University)

  • Antal Berényi

    (University of Szeged
    University of Szeged
    Neunos Inc
    New York University)

Abstract

Dysregulated fear reactions can result from maladaptive processing of trauma-related memories. In post-traumatic stress disorder (PTSD) and other psychiatric disorders, dysfunctional extinction learning prevents discretization of trauma-related memory engrams and generalizes fear responses. Although PTSD may be viewed as a memory-based disorder, no approved treatments target pathological fear memory processing. Hippocampal sharp wave-ripples (SWRs) and concurrent neocortical oscillations are scaffolds to consolidate contextual memory, but their role during fear processing remains poorly understood. Here, we show that closed-loop, SWR triggered neuromodulation of the medial forebrain bundle (MFB) can enhance fear extinction consolidation in male rats. The modified fear memories became resistant to induced recall (i.e., ‘renewal’ and ‘reinstatement’) and did not reemerge spontaneously. These effects were mediated by D2 receptor signaling-induced synaptic remodeling in the basolateral amygdala. Our results demonstrate that SWR-triggered closed-loop stimulation of the MFB reward system enhances extinction of fearful memories and reducing fear expression across different contexts and preventing excessive and persistent fear responses. These findings highlight the potential of neuromodulation to augment extinction learning and provide a new avenue to develop treatments for anxiety disorders.

Suggested Citation

  • Rodrigo Ordoñez Sierra & Lizeth Katherine Pedraza & Lívia Barcsai & Andrea Pejin & Qun Li & Gábor Kozák & Yuichi Takeuchi & Anett J. Nagy & Magor L. Lőrincz & Orrin Devinsky & György Buzsáki & Antal B, 2023. "Closed-loop brain stimulation augments fear extinction in male rats," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39546-7
    DOI: 10.1038/s41467-023-39546-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39546-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39546-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathan G. Hedrick & Stephen C. Harward & Charles E. Hall & Hideji Murakoshi & James O. McNamara & Ryohei Yasuda, 2016. "Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity," Nature, Nature, vol. 538(7623), pages 104-108, October.
    2. M. G. McKernan & P. Shinnick-Gallagher, 1997. "Fear conditioning induces a lasting potentiation of synaptic currents in vitro," Nature, Nature, vol. 390(6660), pages 607-611, December.
    3. Roger L. Redondo & Joshua Kim & Autumn L. Arons & Steve Ramirez & Xu Liu & Susumu Tonegawa, 2014. "Bidirectional switch of the valence associated with a hippocampal contextual memory engram," Nature, Nature, vol. 513(7518), pages 426-430, September.
    4. Nicolette Ognjanovski & Samantha Schaeffer & Jiaxing Wu & Sima Mofakham & Daniel Maruyama & Michal Zochowski & Sara J. Aton, 2017. "Erratum: Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    5. N. K. Logothetis & O. Eschenko & Y. Murayama & M. Augath & T. Steudel & H. C. Evrard & M. Besserve & A. Oeltermann, 2012. "Hippocampal–cortical interaction during periods of subcortical silence," Nature, Nature, vol. 491(7425), pages 547-553, November.
    6. Akiko Hayashi-Takagi & Sho Yagishita & Mayumi Nakamura & Fukutoshi Shirai & Yi I. Wu & Amanda L. Loshbaugh & Brian Kuhlman & Klaus M. Hahn & Haruo Kasai, 2015. "Labelling and optical erasure of synaptic memory traces in the motor cortex," Nature, Nature, vol. 525(7569), pages 333-338, September.
    7. Nicolette Ognjanovski & Samantha Schaeffer & Jiaxing Wu & Sima Mofakham & Daniel Maruyama & Michal Zochowski & Sara J. Aton, 2017. "Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation," Nature Communications, Nature, vol. 8(1), pages 1-14, April.
    8. Cyril Herry & Stephane Ciocchi & Verena Senn & Lynda Demmou & Christian Müller & Andreas Lüthi, 2008. "Switching on and off fear by distinct neuronal circuits," Nature, Nature, vol. 454(7204), pages 600-606, July.
    9. Azahara Oliva & Antonio Fernández-Ruiz & Felix Leroy & Steven A. Siegelbaum, 2020. "Hippocampal CA2 sharp-wave ripples reactivate and promote social memory," Nature, Nature, vol. 587(7833), pages 264-269, November.
    10. Ray Luo & Akira Uematsu & Adam Weitemier & Luca Aquili & Jenny Koivumaa & Thomas J. McHugh & Joshua P. Johansen, 2018. "A dopaminergic switch for fear to safety transitions," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Wang & Jia-Jie Zhu & Lizhao Wang & Yan-Peng Kan & Yan-Mei Liu & Yan-Jiao Wu & Xue Gu & Xin Yi & Ze-Jie Lin & Qin Wang & Jian-Fei Lu & Qin Jiang & Ying Li & Ming-Gang Liu & Nan-Jie Xu & Michael X. Z, 2022. "Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Tansel Baran Yasar & Peter Gombkoto & Alexei L. Vyssotski & Angeliki D. Vavladeli & Christopher M. Lewis & Bifeng Wu & Linus Meienberg & Valter Lundegardh & Fritjof Helmchen & Wolfger von der Behrens , 2024. "Months-long tracking of neuronal ensembles spanning multiple brain areas with Ultra-Flexible Tentacle Electrodes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Alexandros A. Lavdas & Nikos A. Salingaros, 2022. "Architectural Beauty: Developing a Measurable and Objective Scale," Challenges, MDPI, vol. 13(2), pages 1-32, October.
    4. Myung Chung & Katsutoshi Imanaka & Ziyan Huang & Akiyuki Watarai & Mu-Yun Wang & Kentaro Tao & Hirotaka Ejima & Tomomi Aida & Guoping Feng & Teruhiro Okuyama, 2024. "Conditional knockout of Shank3 in the ventral CA1 by quantitative in vivo genome-editing impairs social memory in mice," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jun Liu & Arron F. Hall & Dong V. Wang, 2024. "Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Huiling Yu & Liping Chen & Huiyang Lei & Guilin Pi & Rui Xiong & Tao Jiang & Dongqin Wu & Fei Sun & Yang Gao & Yuanhao Li & Wenju Peng & Bingyu Huang & Guoda Song & Xin Wang & Jingru Lv & Zetao Jin & , 2022. "Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Yann Vanrobaeys & Utsav Mukherjee & Lucy Langmack & Stacy E. Beyer & Ethan Bahl & Li-Chun Lin & Jacob J. Michaelson & Ted Abel & Snehajyoti Chatterjee, 2023. "Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    12. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Dheeraj S. Roy & Young-Gyun Park & Minyoung E. Kim & Ying Zhang & Sachie K. Ogawa & Nicholas DiNapoli & Xinyi Gu & Jae H. Cho & Heejin Choi & Lee Kamentsky & Jared Martin & Olivia Mosto & Tomomi Aida , 2022. "Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Sindy Cole & Rick Richardson & Gavan P McNally, 2013. "Ventral Hippocampal Kappa Opioid Receptors Mediate the Renewal of Fear following Extinction in the Rat," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
    16. Eunji Kong & Kyu-Hee Lee & Jongrok Do & Pilhan Kim & Doyun Lee, 2023. "Dynamic and stable hippocampal representations of social identity and reward expectation support associative social memory in male mice," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Anna J. Bowen & Y. Waterlily Huang & Jane Y. Chen & Jordan L. Pauli & Carlos A. Campos & Richard D. Palmiter, 2023. "Topographic representation of current and future threats in the mouse nociceptive amygdala," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Xunda Wang & Alex T. L. Leong & Shawn Z. K. Tan & Eddie C. Wong & Yilong Liu & Lee-Wei Lim & Ed X. Wu, 2023. "Functional MRI reveals brain-wide actions of thalamically-initiated oscillatory activities on associative memory consolidation," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Hefei Guan & Steven J. Middleton & Takafumi Inoue & Thomas J. McHugh, 2021. "Lateralization of CA1 assemblies in the absence of CA3 input," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Zhang, Shaohua & Zhang, Hongli & Wang, Cong & Lin, Hairong, 2024. "Bionic modeling and dynamics analysis of heterogeneous brain regions connected by memristive synaptic crosstalk," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39546-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.