IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38468-8.html
   My bibliography  Save this article

General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian

Author

Listed:
  • Xiaoxun Gong

    (Tsinghua University
    Peking University)

  • He Li

    (Tsinghua University
    Tsinghua University
    Tencent)

  • Nianlong Zou

    (Tsinghua University)

  • Runzhang Xu

    (Tsinghua University)

  • Wenhui Duan

    (Tsinghua University
    Tsinghua University
    Tencent
    Frontier Science Center for Quantum Information)

  • Yong Xu

    (Tsinghua University
    Tencent
    Frontier Science Center for Quantum Information
    RIKEN Center for Emergent Matter Science (CEMS))

Abstract

The combination of deep learning and ab initio calculation has shown great promise in revolutionizing future scientific research, but how to design neural network models incorporating a priori knowledge and symmetry requirements is a key challenging subject. Here we propose an E(3)-equivariant deep-learning framework to represent density functional theory (DFT) Hamiltonian as a function of material structure, which can naturally preserve the Euclidean symmetry even in the presence of spin–orbit coupling. Our DeepH-E3 method enables efficient electronic structure calculation at ab initio accuracy by learning from DFT data of small-sized structures, making the routine study of large-scale supercells (>104 atoms) feasible. The method can reach sub-meV prediction accuracy at high training efficiency, showing state-of-the-art performance in our experiments. The work is not only of general significance to deep-learning method development but also creates opportunities for materials research, such as building a Moiré-twisted material database.

Suggested Citation

  • Xiaoxun Gong & He Li & Nianlong Zou & Runzhang Xu & Wenhui Duan & Yong Xu, 2023. "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38468-8
    DOI: 10.1038/s41467-023-38468-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38468-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38468-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    2. Yuan Cao & Valla Fatemi & Ahmet Demir & Shiang Fang & Spencer L. Tomarken & Jason Y. Luo & Javier D. Sanchez-Yamagishi & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Ray C. Ashoori & Pablo, 2018. "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 80-84, April.
    3. Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. K. T. Schütt & M. Gastegger & A. Tkatchenko & K.-R. Müller & R. J. Maurer, 2019. "Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zechen Tang & He Li & Peize Lin & Xiaoxun Gong & Gan Jin & Lixin He & Hong Jiang & Xinguo Ren & Wenhui Duan & Yong Xu, 2024. "A deep equivariant neural network approach for efficient hybrid density functional calculations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Ziduo Yang & Yi-Ming Zhao & Xian Wang & Xiaoqing Liu & Xiuying Zhang & Yifan Li & Qiujie Lv & Calvin Yu-Chian Chen & Lei Shen, 2024. "Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Xinyu Wang & Jinghua Jiang & Juan Chen & Zhawure Asilehan & Wentao Tang & Chenhui Peng & Rui Zhang, 2024. "Moiré effect enables versatile design of topological defects in nematic liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. C. D. Dashwood & A. H. Walker & M. P. Kwasigroch & L. S. I. Veiga & Q. Faure & J. G. Vale & D. G. Porter & P. Manuel & D. D. Khalyavin & F. Orlandi & C. V. Colin & O. Fabelo & F. Krüger & R. S. Perry , 2023. "Strain control of a bandwidth-driven spin reorientation in Ca3Ru2O7," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Jubin Nathawat & Ishiaka Mansaray & Kohei Sakanashi & Naoto Wada & Michael D. Randle & Shenchu Yin & Keke He & Nargess Arabchigavkani & Ripudaman Dixit & Bilal Barut & Miao Zhao & Harihara Ramamoorthy, 2023. "Signatures of hot carriers and hot phonons in the re-entrant metallic and semiconducting states of Moiré-gapped graphene," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Shuichi Iwakiri & Alexandra Mestre-Torà & Elías Portolés & Marieke Visscher & Marta Perego & Giulia Zheng & Takashi Taniguchi & Kenji Watanabe & Manfred Sigrist & Thomas Ihn & Klaus Ensslin, 2024. "Tunable quantum interferometer for correlated moiré electrons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Dongxue Chen & Zhen Lian & Xiong Huang & Ying Su & Mina Rashetnia & Li Yan & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Zenghui Wang & Chuanwei Zhang & Yong-Tao Cui & Su-Fei S, 2022. "Tuning moiré excitons and correlated electronic states through layer degree of freedom," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Huagen Li & Dong Wang & Guoqiang Xu & Kaipeng Liu & Tan Zhang & Jiaxin Li & Guangming Tao & Shuihua Yang & Yanghua Lu & Run Hu & Shisheng Lin & Ying Li & Cheng-Wei Qiu, 2024. "Twisted moiré conductive thermal metasurface," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. N. Fang & Y. R. Chang & S. Fujii & D. Yamashita & M. Maruyama & Y. Gao & C. F. Fong & D. Kozawa & K. Otsuka & K. Nagashio & S. Okada & Y. K. Kato, 2024. "Room-temperature quantum emission from interface excitons in mixed-dimensional heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Hideki Matsuoka & Tetsuro Habe & Yoshihiro Iwasa & Mikito Koshino & Masaki Nakano, 2022. "Spontaneous spin-valley polarization in NbSe2 at a van der Waals interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Manabendra Kuiri & Christopher Coleman & Zhenxiang Gao & Aswin Vishnuradhan & Kenji Watanabe & Takashi Taniguchi & Jihang Zhu & Allan H. MacDonald & Joshua Folk, 2022. "Spontaneous time-reversal symmetry breaking in twisted double bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    17. Yuting Tan & Pak Ki Henry Tsang & Vladimir Dobrosavljević, 2022. "Disorder-dominated quantum criticality in moiré bilayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    18. Wenqiang Zhou & Jing Ding & Jiannan Hua & Le Zhang & Kenji Watanabe & Takashi Taniguchi & Wei Zhu & Shuigang Xu, 2024. "Layer-polarized ferromagnetism in rhombohedral multilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Chao Liang & Yilimiranmu Rouzhahong & Caiyuan Ye & Chong Li & Biao Wang & Huashan Li, 2023. "Material symmetry recognition and property prediction accomplished by crystal capsule representation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Zechen Tang & He Li & Peize Lin & Xiaoxun Gong & Gan Jin & Lixin He & Hong Jiang & Xinguo Ren & Wenhui Duan & Yong Xu, 2024. "A deep equivariant neural network approach for efficient hybrid density functional calculations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38468-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.