IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38191-4.html
   My bibliography  Save this article

Quantum microscopy of cells at the Heisenberg limit

Author

Listed:
  • Zhe He

    (California Institute of Technology)

  • Yide Zhang

    (California Institute of Technology)

  • Xin Tong

    (California Institute of Technology)

  • Lei Li

    (California Institute of Technology)

  • Lihong V. Wang

    (California Institute of Technology)

Abstract

Entangled biphoton sources exhibit nonclassical characteristics and have been applied to imaging techniques such as ghost imaging, quantum holography, and quantum optical coherence tomography. The development of wide-field quantum imaging to date has been hindered by low spatial resolutions, speeds, and contrast-to-noise ratios (CNRs). Here, we present quantum microscopy by coincidence (QMC) with balanced pathlengths, which enables super-resolution imaging at the Heisenberg limit with substantially higher speeds and CNRs than existing wide-field quantum imaging methods. QMC benefits from a configuration with balanced pathlengths, where a pair of entangled photons traversing symmetric paths with balanced optical pathlengths in two arms behave like a single photon with half the wavelength, leading to a two-fold resolution improvement. Concurrently, QMC resists stray light up to 155 times stronger than classical signals. The low intensity and entanglement features of biphotons in QMC promise nondestructive bioimaging. QMC advances quantum imaging to the microscopic level with significant improvements in speed and CNR toward the bioimaging of cancer cells. We experimentally and theoretically prove that the configuration with balanced pathlengths illuminates an avenue for quantum-enhanced coincidence imaging at the Heisenberg limit.

Suggested Citation

  • Zhe He & Yide Zhang & Xin Tong & Lei Li & Lihong V. Wang, 2023. "Quantum microscopy of cells at the Heisenberg limit," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38191-4
    DOI: 10.1038/s41467-023-38191-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38191-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38191-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. W. Mitchell & J. S. Lundeen & A. M. Steinberg, 2004. "Super-resolving phase measurements with a multiphoton entangled state," Nature, Nature, vol. 429(6988), pages 161-164, May.
    2. Gabriela Barreto Lemos & Victoria Borish & Garrett D. Cole & Sven Ramelow & Radek Lapkiewicz & Anton Zeilinger, 2014. "Quantum imaging with undetected photons," Nature, Nature, vol. 512(7515), pages 409-412, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shruti Dogra & John J. McCord & Gheorghe Sorin Paraoanu, 2022. "Coherent interaction-free detection of microwave pulses with a superconducting circuit," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yink Loong Len & Tuvia Gefen & Alex Retzker & Jan Kołodyński, 2022. "Quantum metrology with imperfect measurements," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Hugo Defienne & Patrick Cameron & Bienvenu Ndagano & Ashley Lyons & Matthew Reichert & Jiuxuan Zhao & Andrew R. Harvey & Edoardo Charbon & Jason W. Fleischer & Daniele Faccio, 2022. "Pixel super-resolution with spatially entangled photons," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Kaiyi Qian & Kai Wang & Leizhen Chen & Zhaohua Hou & Mario Krenn & Shining Zhu & Xiao-song Ma, 2023. "Multiphoton non-local quantum interference controlled by an undetected photon," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Kun Huang & Jianan Fang & Ming Yan & E Wu & Heping Zeng, 2022. "Wide-field mid-infrared single-photon upconversion imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Xiaodong Qiu & Haoxu Guo & Lixiang Chen, 2023. "Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38191-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.