IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37327-w.html
   My bibliography  Save this article

Cryo-tomography reveals rigid-body motion and organization of apicomplexan invasion machinery

Author

Listed:
  • Long Gui

    (University of Texas, Southwestern Medical Center)

  • William J. O’Shaughnessy

    (University of Texas, Southwestern Medical Center)

  • Kai Cai

    (University of Texas, Southwestern Medical Center
    University of Texas, Southwestern Medical Center)

  • Evan Reetz

    (University of Texas, Southwestern Medical Center)

  • Michael L. Reese

    (University of Texas, Southwestern Medical Center
    University of Texas, Southwestern Medical Center)

  • Daniela Nicastro

    (University of Texas, Southwestern Medical Center)

Abstract

The apical complex is a specialized collection of cytoskeletal and secretory machinery in apicomplexan parasites, which include the pathogens that cause malaria and toxoplasmosis. Its structure and mechanism of motion are poorly understood. We used cryo-FIB-milling and cryo-electron tomography to visualize the 3D-structure of the apical complex in its protruded and retracted states. Averages of conoid-fibers revealed their polarity and unusual nine-protofilament arrangement with associated proteins connecting and likely stabilizing the fibers. Neither the structure of the conoid-fibers nor the architecture of the spiral-shaped conoid complex change during protrusion or retraction. Thus, the conoid moves as a rigid body, and is not spring-like and compressible, as previously suggested. Instead, the apical-polar-rings (APR), previously considered rigid, dilate during conoid protrusion. We identified actin-like filaments connecting the conoid and APR during protrusion, suggesting a role during conoid movements. Furthermore, our data capture the parasites in the act of secretion during conoid protrusion.

Suggested Citation

  • Long Gui & William J. O’Shaughnessy & Kai Cai & Evan Reetz & Michael L. Reese & Daniela Nicastro, 2023. "Cryo-tomography reveals rigid-body motion and organization of apicomplexan invasion machinery," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37327-w
    DOI: 10.1038/s41467-023-37327-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37327-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37327-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shrawan Kumar Mageswaran & Amandine Guérin & Liam M. Theveny & William David Chen & Matthew Martinez & Maryse Lebrun & Boris Striepen & Yi-Wei Chang, 2021. "Author Correction: In situ ultrastructures of two evolutionarily distant apicomplexan rhoptry secretion systems," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    2. Shrawan Kumar Mageswaran & Amandine Guérin & Liam M. Theveny & William David Chen & Matthew Martinez & Maryse Lebrun & Boris Striepen & Yi-Wei Chang, 2021. "In situ ultrastructures of two evolutionarily distant apicomplexan rhoptry secretion systems," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Javier Periz & Mario Rosario & Alexandra McStea & Simon Gras & Colin Loney & Lin Wang & Marisa L. Martin-Fernandez & Markus Meissner, 2019. "A highly dynamic F-actin network regulates transport and recycling of micronemes in Toxoplasma gondii vacuoles," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    4. Shaojun Long & Bryan Anthony & Lisa L. Drewry & L. David Sibley, 2017. "A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Dos Santos Pacheco & Albert Tell i Puig & Amandine Guérin & Matthew Martinez & Bohumil Maco & Nicolò Tosetti & Estefanía Delgado-Betancourt & Matteo Lunghi & Boris Striepen & Yi-Wei Chang & Do, 2024. "Sustained rhoptry docking and discharge requires Toxoplasma gondii intraconoidal microtubule-associated proteins," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Matthew Martinez & Shrawan Kumar Mageswaran & Amandine Guérin & William David Chen & Cameron Parker Thompson & Sabine Chavin & Dominique Soldati-Favre & Boris Striepen & Yi-Wei Chang, 2023. "Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Vincent Louvel & Romuald Haase & Olivier Mercey & Marine H. Laporte & Thibaut Eloy & Étienne Baudrier & Denis Fortun & Dominique Soldati-Favre & Virginie Hamel & Paul Guichard, 2023. "iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludek Koreny & Brandon N. Mercado-Saavedra & Christen M. Klinger & Konstantin Barylyuk & Simon Butterworth & Jennifer Hirst & Yolanda Rivera-Cuevas & Nathan R. Zaccai & Victoria J. C. Holzer & Andreas, 2023. "Stable endocytic structures navigate the complex pellicle of apicomplexan parasites," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Nicolas Dos Santos Pacheco & Albert Tell i Puig & Amandine Guérin & Matthew Martinez & Bohumil Maco & Nicolò Tosetti & Estefanía Delgado-Betancourt & Matteo Lunghi & Boris Striepen & Yi-Wei Chang & Do, 2024. "Sustained rhoptry docking and discharge requires Toxoplasma gondii intraconoidal microtubule-associated proteins," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Matthew Martinez & Shrawan Kumar Mageswaran & Amandine Guérin & William David Chen & Cameron Parker Thompson & Sabine Chavin & Dominique Soldati-Favre & Boris Striepen & Yi-Wei Chang, 2023. "Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Kelli L. Hvorecny & Thomas E. Sladewski & Enrique M. Cruz & Justin M. Kollman & Aoife T. Heaslip, 2024. "Toxoplasma gondii actin filaments are tuned for rapid disassembly and turnover," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Jin-Lei Wang & Ting-Ting Li & Hany M. Elsheikha & Qin-Li Liang & Zhi-Wei Zhang & Meng Wang & L. David Sibley & Xing-Quan Zhu, 2022. "The protein phosphatase 2A holoenzyme is a key regulator of starch metabolism and bradyzoite differentiation in Toxoplasma gondii," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Wenyan Wan & Hui Dong & De-Hua Lai & Jiong Yang & Kai He & Xiaoyan Tang & Qun Liu & Geoff Hide & Xing-Quan Zhu & L. David Sibley & Zhao-Rong Lun & Shaojun Long, 2023. "The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Penelope L. Lindsay & Sergey Ivanov & Nathan Pumplin & Xinchun Zhang & Maria J. Harrison, 2022. "Distinct ankyrin repeat subdomains control VAPYRIN locations and intracellular accommodation functions during arbuscular mycorrhizal symbiosis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37327-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.