IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37071-1.html
   My bibliography  Save this article

Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers

Author

Listed:
  • Meiying Cui

    (Technische Universität Dresden)

  • Dzung Nguyen

    (DyNAbind GmbH)

  • Michelle Patino Gaillez

    (Technische Universität Dresden)

  • Stephan Heiden

    (DyNAbind GmbH)

  • Weilin Lin

    (Technische Universität Dresden)

  • Michael Thompson

    (DyNAbind GmbH)

  • Francesco V. Reddavide

    (DyNAbind GmbH)

  • Qinchang Chen

    (Research Institute of Intelligent Computing, Zhejiang Lab
    Tongji University)

  • Yixin Zhang

    (Technische Universität Dresden)

Abstract

The split-and-pool method has been widely used to synthesize chemical libraries of a large size for early drug discovery, albeit without the possibility of meaningful quality control. In contrast, a self-assembled DNA-encoded chemical library (DEL) allows us to construct an m x n-member library by mixing an m-member and an n-member pre-purified sub-library. Herein, we report a trio-pharmacophore DEL (T-DEL) of m x l x n members through assembling three pre-purified and validated sub-libraries. The middle sub-library is synthesized using DNA-templated synthesis with different reaction mechanisms and designed as a linkage connecting the fragments displayed on the flanking two sub-libraries. Despite assembling three fragments, the resulting compounds do not exceed the up-to-date standard of molecular weight regarding drug-likeness. We demonstrate the utility of T-DEL in linker optimization for known binding fragments against trypsin and carbonic anhydrase II and by de novo selections against matrix metalloprotease-2 and −9.

Suggested Citation

  • Meiying Cui & Dzung Nguyen & Michelle Patino Gaillez & Stephan Heiden & Weilin Lin & Michael Thompson & Francesco V. Reddavide & Qinchang Chen & Yixin Zhang, 2023. "Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37071-1
    DOI: 10.1038/s41467-023-37071-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37071-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37071-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nuria Plattner & Frank Noé, 2015. "Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narjes Ansari & Valerio Rizzi & Michele Parrinello, 2022. "Water regulates the residence time of Benzamidine in Trypsin," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Trayder Thomas & Benoît Roux, 2021. "Tyrosine kinases: complex molecular systems challenging computational methodologies," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-13, October.
    3. Kalyan S. Chakrabarti & Simon Olsson & Supriya Pratihar & Karin Giller & Kerstin Overkamp & Ko On Lee & Vytautas Gapsys & Kyoung-Seok Ryu & Bert L. Groot & Frank Noé & Stefan Becker & Donghan Lee & Th, 2022. "A litmus test for classifying recognition mechanisms of transiently binding proteins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Polydefkis Diamantis & Oliver T Unke & Markus Meuwly, 2017. "Migration of small ligands in globins: Xe diffusion in truncated hemoglobin N," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37071-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.