IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36812-6.html
   My bibliography  Save this article

Monocular metasurface camera for passive single-shot 4D imaging

Author

Listed:
  • Zicheng Shen

    (Tsinghua University)

  • Feng Zhao

    (Tsinghua University)

  • Chunqi Jin

    (Tsinghua University)

  • Shuai Wang

    (Tsinghua University)

  • Liangcai Cao

    (Tsinghua University)

  • Yuanmu Yang

    (Tsinghua University)

Abstract

It is a grand challenge for an imaging system to simultaneously obtain multi-dimensional light field information, such as depth and polarization, of a scene for the accurate perception of the physical world. However, such a task would conventionally require bulky optical components, time-domain multiplexing, and active laser illumination. Here, we experimentally demonstrate a compact monocular camera equipped with a single-layer metalens that can capture a 4D image, including 2D all-in-focus intensity, depth, and polarization of a target scene in a single shot under ambient illumination conditions. The metalens is optimized to have a conjugate pair of polarization-decoupled rotating single-helix point-spread functions that are strongly dependent on the depth of the target object. Combined with a straightforward, physically interpretable image retrieval algorithm, the camera can simultaneously perform high-accuracy depth sensing and high-fidelity polarization imaging over an extended depth of field for both static and dynamic scenes in both indoor and outdoor environments. Such a compact multi-dimensional imaging system could enable new applications in diverse areas ranging from machine vision to microscopy.

Suggested Citation

  • Zicheng Shen & Feng Zhao & Chunqi Jin & Shuai Wang & Liangcai Cao & Yuanmu Yang, 2023. "Monocular metasurface camera for passive single-shot 4D imaging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36812-6
    DOI: 10.1038/s41467-023-36812-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36812-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36812-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher Rogers & Alexander Y. Piggott & David J. Thomson & Robert F. Wiser & Ion E. Opris & Steven A. Fortune & Andrew J. Compston & Alexander Gondarenko & Fanfan Meng & Xia Chen & Graham T. Reed , 2021. "A universal 3D imaging sensor on a silicon photonics platform," Nature, Nature, vol. 590(7845), pages 256-261, February.
    2. Zhu Wang & Soongyu Yi & Ang Chen & Ming Zhou & Ting Shan Luk & Anthony James & John Nogan & Willard Ross & Graham Joe & Alireza Shahsafi & Ken Xingze Wang & Mikhail A. Kats & Zongfu Yu, 2019. "Single-shot on-chip spectral sensors based on photonic crystal slabs," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    3. Nadav Shashar & Roger T. Hanlon & Anne deM. Petz, 1998. "Polarization vision helps detect transparent prey," Nature, Nature, vol. 393(6682), pages 222-223, May.
    4. Yuanmu Yang & Ivan I. Kravchenko & Dayrl P. Briggs & Jason Valentine, 2014. "All-dielectric metasurface analogue of electromagnetically induced transparency," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    5. Amir Arbabi & Ehsan Arbabi & Seyedeh Mahsa Kamali & Yu Horie & Seunghoon Han & Andrei Faraon, 2016. "Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wendi Yan & Ziheng Zhou & Hao Li & Yue Li, 2023. "Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Zi-Lan Deng & Meng-Xia Hu & Shanfeng Qiu & Xianfeng Wu & Adam Overvig & Xiangping Li & Andrea Alù, 2024. "Poincaré sphere trajectory encoding metasurfaces based on generalized Malus’ law," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soongyu Yi & Jin Xiang & Ming Zhou & Zhicheng Wu & Lan Yang & Zongfu Yu, 2021. "Angle-based wavefront sensing enabled by the near fields of flat optics," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jingyi Wang & Beibei Pan & Zi Wang & Jiakai Zhang & Zhiqi Zhou & Lu Yao & Yanan Wu & Wuwei Ren & Jianyu Wang & Haiming Ji & Jingyi Yu & Baile Chen, 2024. "Single-pixel p-graded-n junction spectrometers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Jack Hu & Fareeha Safir & Kai Chang & Sahil Dagli & Halleh B. Balch & John M. Abendroth & Jefferson Dixon & Parivash Moradifar & Varun Dolia & Malaya K. Sahoo & Benjamin A. Pinsky & Stefanie S. Jeffre, 2023. "Rapid genetic screening with high quality factor metasurfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Brandon Born & Sung-Hoon Lee & Jung-Hwan Song & Jeong Yub Lee & Woong Ko & Mark L. Brongersma, 2023. "Off-axis metasurfaces for folded flat optics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Xiaoli Jing & Ruizhe Zhao & Xin Li & Qiang Jiang & Chengzhi Li & Guangzhou Geng & Junjie Li & Yongtian Wang & Lingling Huang, 2022. "Single-shot 3D imaging with point cloud projection based on metadevice," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Qingbin Fan & Weizhu Xu & Xuemei Hu & Wenqi Zhu & Tao Yue & Cheng Zhang & Feng Yan & Lu Chen & Henri J. Lezec & Yanqing Lu & Amit Agrawal & Ting Xu, 2022. "Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Xia Hua & Yujie Wang & Shuming Wang & Xiujuan Zou & You Zhou & Lin Li & Feng Yan & Xun Cao & Shumin Xiao & Din Ping Tsai & Jiecai Han & Zhenlin Wang & Shining Zhu, 2022. "Ultra-compact snapshot spectral light-field imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Phillip S. Blakey & Han Liu & Georgios Papangelakis & Yutian Zhang & Zacharie M. Léger & Meng Lon Iu & Amr S. Helmy, 2022. "Quantum and non-local effects offer over 40 dB noise resilience advantage towards quantum lidar," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Anton Lukashchuk & Halil Kerim Yildirim & Andrea Bancora & Grigory Lihachev & Yang Liu & Zheru Qiu & Xinru Ji & Andrey Voloshin & Sunil A. Bhave & Edoardo Charbon & Tobias J. Kippenberg, 2024. "Photonic-electronic integrated circuit-based coherent LiDAR engine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Anton Lukashchuk & Johann Riemensberger & Maxim Karpov & Junqiu Liu & Tobias J. Kippenberg, 2022. "Dual chirped microcomb based parallel ranging at megapixel-line rates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Gang Wu & Mohamed Abid & Mohamed Zerara & Jiung Cho & Miri Choi & Cormac Ó Coileáin & Kuan-Ming Hung & Ching-Ray Chang & Igor V. Shvets & Han-Chun Wu, 2024. "Miniaturized spectrometer with intrinsic long-term image memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Dawoon Jeong & Hansol Jang & Min Uk Jung & Taeho Jeong & Hyunsoo Kim & Sanghyeok Yang & Janghyeon Lee & Chang-Seok Kim, 2024. "Spatio-spectral 4D coherent ranging using a flutter-wavelength-swept laser," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Ferry Anggoro Ardy Nugroho & Ping Bai & Iwan Darmadi & Gabriel W. Castellanos & Joachim Fritzsche & Christoph Langhammer & Jaime Gómez Rivas & Andrea Baldi, 2022. "Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Huiqin Zhang & Bhaskar Abhiraman & Qing Zhang & Jinshui Miao & Kiyoung Jo & Stefano Roccasecca & Mark W. Knight & Artur R. Davoyan & Deep Jariwala, 2020. "Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    17. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Claudio U. Hail & Morgan Foley & Ruzan Sokhoyan & Lior Michaeli & Harry A. Atwater, 2023. "High quality factor metasurfaces for two-dimensional wavefront manipulation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Yibo Xu & Liyang Lu & Vishwanath Saragadam & Kevin F. Kelly, 2024. "A compressive hyperspectral video imaging system using a single-pixel detector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Dylan Tua & Ruiying Liu & Wenhong Yang & Lyu Zhou & Haomin Song & Leslie Ying & Qiaoqiang Gan, 2023. "Imaging-based intelligent spectrometer on a plasmonic rainbow chip," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36812-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.