IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36510-3.html
   My bibliography  Save this article

Ultra-wideband-responsive photon conversion through co-sensitization in lanthanide nanocrystals

Author

Listed:
  • Zhao Jiang

    (Shanghai Jiao Tong University)

  • Liangrui He

    (Shanghai Jiao Tong University)

  • Zhiwen Yang

    (Shanghai Jiao Tong University)

  • Huibin Qiu

    (Shanghai Jiao Tong University)

  • Xiaoyuan Chen

    (National University of Singapore)

  • Xujiang Yu

    (Shanghai Jiao Tong University)

  • Wanwan Li

    (Shanghai Jiao Tong University)

Abstract

Distinctive upconversion or downshifting of lanthanide nanocrystals holds promise for biomedical and photonic applications. However, either process requires high-energy lasers at discrete wavelengths for excitation. Here we demonstrate that co-sensitization can break this limitation with ultrawide excitation bands. We achieve co-sensitization by employing Nd3+ and Ho3+ as the co-sensitizers with complementary absorptions from the ultraviolet to infrared region. Symmetric penta-layer core-shell nanostructure enables tunable fluorescence in the visible and the second near-infrared window when incorporating different activators (Er3+, Ho3+, Pr3+, and Tm3+). Transient spectra confirm the directional energy transfer from sensitizers to activators through the bridge of Yb3+. We validate the features of the nanocrystals for low-powered white light-emitting diode-mediated whole-body angiography of mice with a signal-to-noise ratio of 12.3 and excitation-regulated encryption. This co-sensitization strategy paves a new way in lanthanide nanocrystals for multidirectional photon conversion manipulation and excitation-bandwidth-regulated fluorescence applications.

Suggested Citation

  • Zhao Jiang & Liangrui He & Zhiwen Yang & Huibin Qiu & Xiaoyuan Chen & Xujiang Yu & Wanwan Li, 2023. "Ultra-wideband-responsive photon conversion through co-sensitization in lanthanide nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36510-3
    DOI: 10.1038/s41467-023-36510-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36510-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36510-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qianqian Su & Han-Lin Wei & Yachong Liu & Chaohao Chen & Ming Guan & Shuai Wang & Yan Su & Haifang Wang & Zhigang Chen & Dayong Jin, 2021. "Six-photon upconverted excitation energy lock-in for ultraviolet-C enhancement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Limin Jin & Xian Chen & Yunkai Wu & Xiangzhe Ai & Xiaoli Yang & Shumin Xiao & Qinghai Song, 2022. "Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Sanyang Han & Renren Deng & Qifei Gu & Limeng Ni & Uyen Huynh & Jiangbin Zhang & Zhigao Yi & Baodan Zhao & Hiroyuki Tamura & Anton Pershin & Hui Xu & Zhiyuan Huang & Shahab Ahmad & Mojtaba Abdi-Jalebi, 2020. "Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright," Nature, Nature, vol. 587(7835), pages 594-599, November.
    4. Changhwan Lee & Emma Z. Xu & Yawei Liu & Ayelet Teitelboim & Kaiyuan Yao & Angel Fernandez-Bravo & Agata M. Kotulska & Sang Hwan Nam & Yung Doug Suh & Artur Bednarkiewicz & Bruce E. Cohen & Emory M. C, 2021. "Giant nonlinear optical responses from photon-avalanching nanoparticles," Nature, Nature, vol. 589(7841), pages 230-235, January.
    5. D. J. Naczynski & M. C. Tan & M. Zevon & B. Wall & J. Kohl & A. Kulesa & S. Chen & C. M. Roth & R. E. Riman & P. V. Moghe, 2013. "Rare-earth-doped biological composites as in vivo shortwave infrared reporters," Nature Communications, Nature, vol. 4(1), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guowei Li & Shihui Jiang & Aijun Liu & Lixiang Ye & Jianxi Ke & Caiping Liu & Lian Chen & Yongsheng Liu & Maochun Hong, 2023. "Proof of crystal-field-perturbation-enhanced luminescence of lanthanide-doped nanocrystals through interstitial H+ doping," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Rui Pu & Qiuqiang Zhan & Xingyun Peng & Siying Liu & Xin Guo & Liangliang Liang & Xian Qin & Ziqing Winston Zhao & Xiaogang Liu, 2022. "Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Aiyan Ji & Hongyue Lou & Chunrong Qu & Wanglong Lu & Yifan Hao & Jiafeng Li & Yuyang Wu & Tonghang Chang & Hao Chen & Zhen Cheng, 2022. "Acceptor engineering for NIR-II dyes with high photochemical and biomedical performance," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ahmed Sule & Zulkarnain Abdul Latiff & Mohd Azman Abas & Ibham Veza & Manzoore Elahi M. Soudagar & Irianto Harny & Vorathin Epin, 2023. "Dual Effects of N-Butanol and Magnetite Nanoparticle to Biodiesel-Diesel Fuel Blends as Additives on Emission Pattern and Performance of a Diesel Engine with ANN Validation," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    6. Yulei Chang & Haoren Chen & Xiaoyu Xie & Yong Wan & Qiqing Li & Fengxia Wu & Run Yang & Wang Wang & Xianggui Kong, 2023. "Bright Tm3+-based downshifting luminescence nanoprobe operating around 1800 nm for NIR-IIb and c bioimaging," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Fernando Arteaga Cardona & Noopur Jain & Radian Popescu & Dmitry Busko & Eduard Madirov & Bernardo A. ArĂºs & Dagmar Gerthsen & Annick Backer & Sara Bals & Oliver T. Bruns & Andriy Chmyrov & Sandra Aer, 2023. "Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Xiang-Dong Chen & En-Hui Wang & Long-Kun Shan & Shao-Chun Zhang & Ce Feng & Yu Zheng & Yang Dong & Guang-Can Guo & Fang-Wen Sun, 2023. "Quantum enhanced radio detection and ranging with solid spins," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Long Yan & Jinshu Huang & Zhengce An & Qinyuan Zhang & Bo Zhou, 2024. "Spatiotemporal control of photochromic upconversion through interfacial energy transfer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36510-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.