IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35578-7.html
   My bibliography  Save this article

Accurate temperature diagnostics for matter under extreme conditions

Author

Listed:
  • Tobias Dornheim

    (Center for Advanced Systems Understanding (CASUS)
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR))

  • Maximilian Böhme

    (Center for Advanced Systems Understanding (CASUS)
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
    Technische Universität Dresden)

  • Dominik Kraus

    (Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
    Institut für Physik, Universität Rostock)

  • Tilo Döppner

    (Lawrence Livermore National Laboratory)

  • Thomas R. Preston

    (European XFEL)

  • Zhandos A. Moldabekov

    (Center for Advanced Systems Understanding (CASUS)
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR))

  • Jan Vorberger

    (Helmholtz-Zentrum Dresden-Rossendorf (HZDR))

Abstract

The experimental investigation of matter under extreme densities and temperatures, as in astrophysical objects and nuclear fusion applications, constitutes one of the most active frontiers at the interface of material science, plasma physics, and engineering. The central obstacle is given by the rigorous interpretation of the experimental results, as even the diagnosis of basic parameters like the temperature T is rendered difficult at these extreme conditions. Here, we present a simple, approximation-free method to extract the temperature of arbitrarily complex materials in thermal equilibrium from X-ray Thomson scattering experiments, without the need for any simulations or an explicit deconvolution. Our paradigm can be readily implemented at modern facilities and corresponding experiments will have a profound impact on our understanding of warm dense matter and beyond, and open up a variety of appealing possibilities in the context of thermonuclear fusion, laboratory astrophysics, and related disciplines.

Suggested Citation

  • Tobias Dornheim & Maximilian Böhme & Dominik Kraus & Tilo Döppner & Thomas R. Preston & Zhandos A. Moldabekov & Jan Vorberger, 2022. "Accurate temperature diagnostics for matter under extreme conditions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35578-7
    DOI: 10.1038/s41467-022-35578-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35578-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35578-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Brygoo & P. Loubeyre & M. Millot & J. R. Rygg & P. M. Celliers & J. H. Eggert & R. Jeanloz & G. W. Collins, 2021. "Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions," Nature, Nature, vol. 593(7860), pages 517-521, May.
    2. D. Kraus & A. Ravasio & M. Gauthier & D. O. Gericke & J. Vorberger & S. Frydrych & J. Helfrich & L. B. Fletcher & G. Schaumann & B. Nagler & B. Barbrel & B. Bachmann & E. J. Gamboa & S. Göde & E. Gran, 2016. "Nanosecond formation of diamond and lonsdaleite by shock compression of graphite," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    3. A. B. Zylstra & O. A. Hurricane & D. A. Callahan & A. L. Kritcher & J. E. Ralph & H. F. Robey & J. S. Ross & C. V. Young & K. L. Baker & D. T. Casey & T. Döppner & L. Divol & M. Hohenberger & S. Pape , 2022. "Burning plasma achieved in inertial fusion," Nature, Nature, vol. 601(7894), pages 542-548, January.
    4. A. B. Zylstra & O. A. Hurricane & D. A. Callahan & A. L. Kritcher & J. E. Ralph & H. F. Robey & J. S. Ross & C. V. Young & K. L. Baker & D. T. Casey & T. Döppner & L. Divol & M. Hohenberger & S. Pape , 2022. "Publisher Correction: Burning plasma achieved in inertial fusion," Nature, Nature, vol. 603(7903), pages 34-34, March.
    5. Shang-Fei Liu & Yasunori Hori & Simon Müller & Xiaochen Zheng & Ravit Helled & Doug Lin & Andrea Isella, 2019. "The formation of Jupiter’s diluted core by a giant impact," Nature, Nature, vol. 572(7769), pages 355-357, August.
    6. Andrea L. Kritcher & Damian C. Swift & Tilo Döppner & Benjamin Bachmann & Lorin X. Benedict & Gilbert W. Collins & Jonathan L. DuBois & Fred Elsner & Gilles Fontaine & Jim A. Gaffney & Sebastien Hamel, 2020. "A measurement of the equation of state of carbon envelopes of white dwarfs," Nature, Nature, vol. 584(7819), pages 51-54, August.
    7. A. Lazicki & D. McGonegle & J. R. Rygg & D. G. Braun & D. C. Swift & M. G. Gorman & R. F. Smith & P. G. Heighway & A. Higginbotham & M. J. Suggit & D. E. Fratanduono & F. Coppari & C. E. Wehrenberg & , 2021. "Metastability of diamond ramp-compressed to 2 terapascals," Nature, Nature, vol. 589(7843), pages 532-535, January.
    8. J. E. Bailey & T. Nagayama & G. P. Loisel & G. A. Rochau & C. Blancard & J. Colgan & Ph. Cosse & G. Faussurier & C. J. Fontes & F. Gilleron & I. Golovkin & S. B. Hansen & C. A. Iglesias & D. P. Kilcre, 2015. "A higher-than-predicted measurement of iron opacity at solar interior temperatures," Nature, Nature, vol. 517(7532), pages 56-59, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boubacar Kanté, 2024. "BerkSEL: A scale-invariant laser beyond the Schawlow-Townes two-mirror strategy," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    2. J. E. Ralph & J. S. Ross & A. B. Zylstra & A. L. Kritcher & H. F. Robey & C. V. Young & O. A. Hurricane & A. Pak & D. A. Callahan & K. L. Baker & D. T. Casey & T. Döppner & L. Divol & M. Hohenberger &, 2024. "The impact of low-mode symmetry on inertial fusion energy output in the burning plasma state," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Bingqing Cheng & Sebastien Hamel & Mandy Bethkenhagen, 2023. "Thermodynamics of diamond formation from hydrocarbon mixtures in planets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. S. X. Hu & David T. Bishel & David A. Chin & Philip M. Nilson & Valentin V. Karasiev & Igor E. Golovkin & Ming Gu & Stephanie B. Hansen & Deyan I. Mihaylov & Nathaniel R. Shaffer & Shuai Zhang & Timot, 2022. "Probing atomic physics at ultrahigh pressure using laser-driven implosions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Cong Liu & Ion Errea & Chi Ding & Chris Pickard & Lewis J. Conway & Bartomeu Monserrat & Yue-Wen Fang & Qing Lu & Jian Sun & Jordi Boronat & Claudio Cazorla, 2023. "Excitonic insulator to superconductor phase transition in ultra-compressed helium," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. H. Sio & A. Krygier & D. G. Braun & R. E. Rudd & S. A. Bonev & F. Coppari & M. Millot & D. E. Fratanduono & N. Bhandarkar & M. Bitter & D. K. Bradley & P. C. Efthimion & J. H. Eggert & L. Gao & K. W. , 2023. "Extended X-ray absorption fine structure of dynamically-compressed copper up to 1 terapascal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. D. Kim & R. F. Smith & I. K. Ocampo & F. Coppari & M. C. Marshall & M. K. Ginnane & J. K. Wicks & S. J. Tracy & M. Millot & A. Lazicki & J. R. Rygg & J. H. Eggert & T. S. Duffy, 2022. "Structure and density of silicon carbide to 1.5 TPa and implications for extrasolar planets," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Ryan Babbush & William J. Huggins & Dominic W. Berry & Shu Fay Ung & Andrew Zhao & David R. Reichman & Hartmut Neven & Andrew D. Baczewski & Joonho Lee, 2023. "Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35578-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.