IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35432-w.html
   My bibliography  Save this article

Electrically conductive hybrid organic crystals as flexible optical waveguides

Author

Listed:
  • Xuesong Yang

    (Jilin University)

  • Linfeng Lan

    (Jilin University)

  • Xiuhong Pan

    (Jilin University)

  • Xiaokong Liu

    (Jilin University)

  • Yilong Song

    (Jilin University)

  • Xueying Yang

    (Jilin University)

  • Qingfeng Dong

    (Jilin University)

  • Liang Li

    (New York University Abu Dhabi
    Sorbonne University Abu Dhabi)

  • Panče Naumov

    (New York University Abu Dhabi
    New York University
    Macedonian Academy of Sciences and Arts)

  • Hongyu Zhang

    (Jilin University)

Abstract

Hybrid materials capitalize on the properties of individual materials to attain a specific combination of performance assets that is not available with the individual components alone. We describe a straightforward approach to preparation of sandwich-type hybrid dynamic materials that combine metals as electrically conductive components and polymers as bending, momentum-inducing components with flexible organic crystals as mechanically compliant and optically transducive medium. The resulting hybrid materials are conductive to both electricity and light, while they also respond to changes in temperature by deformation. Depending on the metal, their conductivity ranges from 7.9 to 21.0 S µm‒1. The elements respond rapidly to temperature by curling or uncurling in about 0.2 s, which in one typical case corresponds to exceedingly fast deformation and recovery rates of 2187.5° s‒1 and 1458.3° s‒1, respectively. In cyclic operation mode, their conductivity decreases less than 1% after 10,000 thermal cycles. The mechanothermal robustness and dual functionality favors these materials as candidates for a variety of applications in organic-based optics and electronics, and expands the prospects of application of organic crystals beyond the natural limits of their dynamic performance.

Suggested Citation

  • Xuesong Yang & Linfeng Lan & Xiuhong Pan & Xiaokong Liu & Yilong Song & Xueying Yang & Qingfeng Dong & Liang Li & Panče Naumov & Hongyu Zhang, 2022. "Electrically conductive hybrid organic crystals as flexible optical waveguides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35432-w
    DOI: 10.1038/s41467-022-35432-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35432-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35432-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Owczarek & Karl A. Hujsak & Daniel P. Ferris & Aleksandrs Prokofjevs & Irena Majerz & Przemysław Szklarz & Huacheng Zhang & Amy A. Sarjeant & Charlotte L. Stern & Ryszard Jakubas & Seungbum , 2016. "Flexible ferroelectric organic crystals," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    2. Xuesong Yang & Linfeng Lan & Liang Li & Xiaokong Liu & Panče Naumov & Hongyu Zhang, 2022. "Remote and precise control over morphology and motion of organic crystals by using magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuesong Yang & Linfeng Lan & Xiuhong Pan & Qi Di & Xiaokong Liu & Liang Li & Panče Naumov & Hongyu Zhang, 2023. "Bioinspired soft robots based on organic polymer-crystal hybrid materials with response to temperature and humidity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Xuesong Yang & Linfeng Lan & Liang Li & Jinyang Yu & Xiaokong Liu & Ying Tao & Quan-Hong Yang & Panče Naumov & Hongyu Zhang, 2023. "Collective photothermal bending of flexible organic crystals modified with MXene-polymer multilayers as optical waveguide arrays," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian-Cai An & Xiang Li & Zhi-Gang Li & Qite Li & Patrick J. Beldon & Fei-Fei Gao & Zi-Ying Li & Shengli Zhu & Lu Di & Sanchuan Zhao & Jian Zhu & Davide Comboni & Ilya Kupenko & Wei Li & U. Ramamurty &, 2022. "Plastic bending in a semiconducting coordination polymer crystal enabled by delamination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xuesong Yang & Linfeng Lan & Xiuhong Pan & Qi Di & Xiaokong Liu & Liang Li & Panče Naumov & Hongyu Zhang, 2023. "Bioinspired soft robots based on organic polymer-crystal hybrid materials with response to temperature and humidity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Xuesong Yang & Linfeng Lan & Liang Li & Jinyang Yu & Xiaokong Liu & Ying Tao & Quan-Hong Yang & Panče Naumov & Hongyu Zhang, 2023. "Collective photothermal bending of flexible organic crystals modified with MXene-polymer multilayers as optical waveguide arrays," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35432-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.