IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35063-1.html
   My bibliography  Save this article

Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii

Author

Listed:
  • Junhui Yuan

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden)

  • Sanjie Jiang

    (BGI Genomics, BGI-Shenzhen)

  • Jianbo Jian

    (BGI Genomics, BGI-Shenzhen)

  • Mingyu Liu

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden
    College of Landscape Architecture and Forestry, Qingdao Agriculture University)

  • Zhen Yue

    (BGI Genomics, BGI-Shenzhen)

  • Jiabao Xu

    (BGI Genomics, BGI-Shenzhen)

  • Juan Li

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden
    College of Landscape Architecture and Forestry, Qingdao Agriculture University)

  • Chunyan Xu

    (BGI Genomics, BGI-Shenzhen)

  • Lihong Lin

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden
    College of Life Sciences)

  • Yi Jing

    (BGI Genomics, BGI-Shenzhen)

  • Xiaoxiao Zhang

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden
    Northwest A&F University, Yangling)

  • Haixin Chen

    (BGI Genomics, BGI-Shenzhen)

  • Linjuan Zhang

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden
    College of Life Sciences)

  • Tao Fu

    (BGI Genomics, BGI-Shenzhen)

  • Shuiyan Yu

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden)

  • Zhangyan Wu

    (BGI Genomics, BGI-Shenzhen)

  • Ying Zhang

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden)

  • Chongzhi Wang

    (BGI Genomics, BGI-Shenzhen)

  • Xiao Zhang

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden
    College of Landscape Architecture and Forestry, Qingdao Agriculture University)

  • Liangbo Huang

    (BGI Genomics, BGI-Shenzhen)

  • Hongqi Wang

    (BGI Genomics, BGI-Shenzhen)

  • Deyuan Hong

    (Institute of Botany, Chinese Academy of Sciences)

  • Xiao-Ya Chen

    (Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences)

  • Yonghong Hu

    (the Chinese Academy of Science, Shanghai Chenshan Botanical Garden)

Abstract

Tree peony (Paeonia ostii) is an economically important ornamental plant native to China. It is also notable for its seed oil, which is abundant in unsaturated fatty acids such as α-linolenic acid (ALA). Here, we report chromosome-level genome assembly (12.28 Gb) of P. ostii. In contrast to monocots with giant genomes, tree peony does not appear to have undergone lineage-specific whole-genome duplication. Instead, explosive LTR expansion in the intergenic regions within a short period (~ two million years) may have contributed to the formation of its giga-genome. In addition, expansion of five types of histone encoding genes may have helped maintain the giga-chromosomes. Further, we conduct genome-wide association studies (GWAS) on 448 accessions and show expansion and high expression of several genes in the key nodes of fatty acid biosynthetic pathway, including SAD, FAD2 and FAD3, may function in high level of ALAs synthesis in tree peony seeds. Moreover, by comparing with cultivated tree peony (P. suffruticosa), we show that ectopic expression of class A gene AP1 and reduced expression of class C gene AG may contribute to the formation of petaloid stamens. Genomic resources reported in this study will be valuable for studying chromosome/genome evolution and tree peony breeding.

Suggested Citation

  • Junhui Yuan & Sanjie Jiang & Jianbo Jian & Mingyu Liu & Zhen Yue & Jiabao Xu & Juan Li & Chunyan Xu & Lihong Lin & Yi Jing & Xiaoxiao Zhang & Haixin Chen & Linjuan Zhang & Tao Fu & Shuiyan Yu & Zhangy, 2022. "Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35063-1
    DOI: 10.1038/s41467-022-35063-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35063-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35063-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sean Walkowiak & Liangliang Gao & Cecile Monat & Georg Haberer & Mulualem T. Kassa & Jemima Brinton & Ricardo H. Ramirez-Gonzalez & Markus C. Kolodziej & Emily Delorean & Dinushika Thambugala & Valent, 2020. "Multiple wheat genomes reveal global variation in modern breeding," Nature, Nature, vol. 588(7837), pages 277-283, December.
    2. Olivier Delaneau & Jean-François Zagury & Matthew R. Robinson & Jonathan L. Marchini & Emmanouil T. Dermitzakis, 2019. "Accurate, scalable and integrative haplotype estimation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Li Lu & Xiangsong Chen & Shuiming Qian & Xuehua Zhong, 2018. "The plant-specific histone residue Phe41 is important for genome-wide H3.1 distribution," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Shengxiong Huang & Jian Ding & Dejing Deng & Wei Tang & Honghe Sun & Dongyuan Liu & Lei Zhang & Xiangli Niu & Xia Zhang & Meng Meng & Jinde Yu & Jia Liu & Yi Han & Wei Shi & Danfeng Zhang & Shuqing Ca, 2013. "Draft genome of the kiwifruit Actinidia chinensis," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    5. Xiaohan Yang & Rongbin Hu & Hengfu Yin & Jerry Jenkins & Shengqiang Shu & Haibao Tang & Degao Liu & Deborah A. Weighill & Won Cheol Yim & Jungmin Ha & Karolina Heyduk & David M. Goodstein & Hao-Bo Guo, 2017. "The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    6. Liangsheng Zhang & Fei Chen & Xingtan Zhang & Zhen Li & Yiyong Zhao & Rolf Lohaus & Xiaojun Chang & Wei Dong & Simon Y. W. Ho & Xing Liu & Aixia Song & Junhao Chen & Wenlei Guo & Zhengjia Wang & Yingy, 2020. "The water lily genome and the early evolution of flowering plants," Nature, Nature, vol. 577(7788), pages 79-84, January.
    7. Ray Ming & Shaobin Hou & Yun Feng & Qingyi Yu & Alexandre Dionne-Laporte & Jimmy H. Saw & Pavel Senin & Wei Wang & Benjamin V. Ly & Kanako L. T. Lewis & Steven L. Salzberg & Lu Feng & Meghan R. Jones , 2008. "The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)," Nature, Nature, vol. 452(7190), pages 991-996, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Wickell & Li-Yaung Kuo & Hsiao-Pei Yang & Amra Dhabalia Ashok & Iker Irisarri & Armin Dadras & Sophie de Vries & Jan de Vries & Yao-Moan Huang & Zheng Li & Michael S. Barker & Nolan T. Hartwick , 2021. "Underwater CAM photosynthesis elucidated by Isoetes genome," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Dongya Wu & Enhui Shen & Bowen Jiang & Yu Feng & Wei Tang & Sangting Lao & Lei Jia & Han-Yang Lin & Lingjuan Xie & Xifang Weng & Chenfeng Dong & Qinghong Qian & Feng Lin & Haiming Xu & Huabing Lu & Lu, 2022. "Genomic insights into the evolution of Echinochloa species as weed and orphan crop," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Miaomiao Li & Huaizhi Zhang & Huixin Xiao & Keyu Zhu & Wenqi Shi & Dong Zhang & Yong Wang & Lijun Yang & Qiuhong Wu & Jingzhong Xie & Yongxing Chen & Dan Qiu & Guanghao Guo & Ping Lu & Beibei Li & Lei, 2024. "A membrane associated tandem kinase from wild emmer wheat confers broad-spectrum resistance to powdery mildew," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    6. Heiner Kuhl & Kang Du & Manfred Schartl & Lukáš Kalous & Matthias Stöck & Dunja K. Lamatsch, 2022. "Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Zihao Wang & Wenxi Wang & Xiaoming Xie & Yongfa Wang & Zhengzhao Yang & Huiru Peng & Mingming Xin & Yingyin Yao & Zhaorong Hu & Jie Liu & Zhenqi Su & Chaojie Xie & Baoyun Li & Zhongfu Ni & Qixin Sun &, 2022. "Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Fei He & Wei Wang & William B. Rutter & Katherine W. Jordan & Jie Ren & Ellie Taagen & Noah DeWitt & Deepmala Sehgal & Sivakumar Sukumaran & Susanne Dreisigacker & Matthew Reynolds & Jyotirmoy Halder , 2022. "Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Jianping Zhang & Jayaveeramuthu Nirmala & Shisheng Chen & Matthias Jost & Burkhard Steuernagel & Mirka Karafiatova & Tim Hewitt & Hongna Li & Erena Edae & Keshav Sharma & Sami Hoxha & Dhara Bhatt & Re, 2023. "Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Lijing Tang & Benjamin Swedlund & Sébastien Dupont & Chad Harland & Gabriel Costa Monteiro Moreira & Keith Durkin & Maria Artesi & Eric Mullaart & Arnaud Sartelet & Latifa Karim & Wouter Coppieters & , 2024. "GWAS reveals determinants of mobilization rate and dynamics of an active endogenous retrovirus of cattle," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Robin J. Hofmeister & Simone Rubinacci & Diogo M. Ribeiro & Alfonso Buil & Zoltán Kutalik & Olivier Delaneau, 2022. "Parent-of-Origin inference for biobanks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Habteab Goitom Gebremedhin & Yahui Li & Jinghuang Hu & Dan Qiu & Qiuhong Wu & Hongjun Zhang & Li Yang & Yang Zhou & Yijun Zhou & Zhiyong Liu & Peng Zhang & Hongjie Li, 2022. "Development of KASP and SSR Markers for PmQ , a Recessive Gene Conferring Powdery Mildew Resistance in Wheat Landrace Qingxinmai," Agriculture, MDPI, vol. 12(9), pages 1-10, August.
    13. Jianxiang Ma & Pengchuan Sun & Dandan Wang & Zhenyue Wang & Jiao Yang & Ying Li & Wenjie Mu & Renping Xu & Ying Wu & Congcong Dong & Nawal Shrestha & Jianquan Liu & Yongzhi Yang, 2021. "The Chloranthus sessilifolius genome provides insight into early diversification of angiosperms," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    14. Xinkai Tong & Dong Chen & Jianchao Hu & Shiyao Lin & Ziqi Ling & Huashui Ai & Zhiyan Zhang & Lusheng Huang, 2023. "Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Bárbara Sousa da Mota & Simone Rubinacci & Diana Ivette Cruz Dávalos & Carlos Eduardo G. Amorim & Martin Sikora & Niels N. Johannsen & Marzena H. Szmyt & Piotr Włodarczak & Anita Szczepanek & Marcin M, 2023. "Imputation of ancient human genomes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Salma O. M. Osman & Abu Sefyan I. Saad & Shota Tadano & Yoshiki Takeda & Yuji Yamasaki & Izzat S. A. Tahir & Hisashi Tsujimoto & Kinya Akashi, 2022. "Probing Differential Metabolome Responses among Wheat Genotypes to Heat Stress Using Fourier Transform Infrared-Based Chemical Fingerprinting," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    17. Parker C. Wilson & Yoshiharu Muto & Haojia Wu & Anil Karihaloo & Sushrut S. Waikar & Benjamin D. Humphreys, 2022. "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    18. Seppe Goovaerts & Hanne Hoskens & Ryan J. Eller & Noah Herrick & Anthony M. Musolf & Cristina M. Justice & Meng Yuan & Sahin Naqvi & Myoung Keun Lee & Dirk Vandermeulen & Heather L. Szabo-Rogers & Pau, 2023. "Joint multi-ancestry and admixed GWAS reveals the complex genetics behind human cranial vault shape," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Heqiang Lou & Lili Song & Xiaolong Li & Hailing Zi & Weijie Chen & Yadi Gao & Shan Zheng & Zhangjun Fei & Xuepeng Sun & Jiasheng Wu, 2023. "The Torreya grandis genome illuminates the origin and evolution of gymnosperm-specific sciadonic acid biosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Liqiang Song & Ruihui Wang & Xueju Yang & Aimin Zhang & Dongcheng Liu, 2023. "Molecular Markers and Their Applications in Marker-Assisted Selection (MAS) in Bread Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(3), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35063-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.