IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34736-1.html
   My bibliography  Save this article

CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae

Author

Listed:
  • Jun Huang

    (Kansas State University)

  • David Rowe

    (Kansas State University)

  • Pratima Subedi

    (Kansas State University)

  • Wei Zhang

    (Kansas State University)

  • Tyler Suelter

    (Kansas State University)

  • Barbara Valent

    (Kansas State University)

  • David E. Cook

    (Kansas State University)

Abstract

CRISPR-Cas mediated genome engineering has revolutionized functional genomics. However, understanding of DNA repair following Cas-mediated DNA cleavage remains incomplete. Using Cas12a ribonucleoprotein genome editing in the fungal pathogen, Magnaporthe oryzae, we detail non-canonical DNA repair outcomes from hundreds of transformants. Sanger and nanopore sequencing analysis reveals significant variation in DNA repair profiles, ranging from small INDELs to kilobase size deletions and insertions. Furthermore, we find the frequency of DNA repair outcomes varies between loci. The results are not specific to the Cas-nuclease or selection procedure. Through Ku80 deletion analysis, a key protein required for canonical non-homologous end joining, we demonstrate activity of an alternative end joining mechanism that creates larger DNA deletions, and uses longer microhomology compared to C-NHEJ. Together, our results suggest preferential DNA repair pathway activity in the genome that can create different mutation profiles following repair, which could create biased genome variation and impact genome engineering and genome evolution.

Suggested Citation

  • Jun Huang & David Rowe & Pratima Subedi & Wei Zhang & Tyler Suelter & Barbara Valent & David E. Cook, 2022. "CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34736-1
    DOI: 10.1038/s41467-022-34736-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34736-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34736-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fatwa Adikusuma & Sandra Piltz & Mark A. Corbett & Michelle Turvey & Shaun R. McColl & Karla J. Helbig & Michael R. Beard & James Hughes & Richard T. Pomerantz & Paul Q. Thomas, 2018. "Large deletions induced by Cas9 cleavage," Nature, Nature, vol. 560(7717), pages 8-9, August.
    2. Robin van Schendel & Sophie F. Roerink & Vincent Portegijs & Sander van den Heuvel & Marcel Tijsterman, 2015. "Polymerase Θ is a key driver of genome evolution and of CRISPR/Cas9-mediated mutagenesis," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. Santiago Gisler & Joana P. Gonçalves & Waseem Akhtar & Johann de Jong & Alexey V. Pindyurin & Lodewyk F. A. Wessels & Maarten van Lohuizen, 2019. "Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. John R. Walker & Richard A. Corpina & Jonathan Goldberg, 2001. "Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair," Nature, Nature, vol. 412(6847), pages 607-614, August.
    5. James E. Haber, 1999. "Gatekeepers of recombination," Nature, Nature, vol. 398(6729), pages 665-667, April.
    6. Anne Bothmer & Tanushree Phadke & Luis A. Barrera & Carrie M Margulies & Christina S. Lee & Frank Buquicchio & Sean Moss & Hayat S. Abdulkerim & William Selleck & Hariharan Jayaram & Vic E. Myer & Cec, 2017. "Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    7. Keiichiro Suzuki & Yuji Tsunekawa & Reyna Hernandez-Benitez & Jun Wu & Jie Zhu & Euiseok J. Kim & Fumiyuki Hatanaka & Mako Yamamoto & Toshikazu Araoka & Zhe Li & Masakazu Kurita & Tomoaki Hishida & Mo, 2016. "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration," Nature, Nature, vol. 540(7631), pages 144-149, December.
    8. Ralph A. Dean & Nicholas J. Talbot & Daniel J. Ebbole & Mark L. Farman & Thomas K. Mitchell & Marc J. Orbach & Michael Thon & Resham Kulkarni & Jin-Rong Xu & Huaqin Pan & Nick D. Read & Yong-Hwan Lee , 2005. "The genome sequence of the rice blast fungus Magnaporthe grisea," Nature, Nature, vol. 434(7036), pages 980-986, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Peterka & Nina Akrap & Songyuan Li & Sandra Wimberger & Pei-Pei Hsieh & Dmitrii Degtev & Burcu Bestas & Jack Barr & Stijn Plassche & Patricia Mendoza-Garcia & Saša Šviković & Grzegorz Sienski &, 2022. "Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Takeshi Hori & Hiroaki Okae & Shun Shibata & Norio Kobayashi & Eri H. Kobayashi & Akira Oike & Asato Sekiya & Takahiro Arima & Hirokazu Kaji, 2024. "Trophoblast stem cell-based organoid models of the human placental barrier," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Benjamin M. Stinson & Sean M. Carney & Johannes C. Walter & Joseph J. Loparo, 2024. "Structural role for DNA Ligase IV in promoting the fidelity of non-homologous end joining," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    5. Xiangjun He & Zhenjie Zhang & Junyi Xue & Yaofeng Wang & Siqi Zhang & Junkang Wei & Chenzi Zhang & Jue Wang & Brian Anugerah Urip & Chun Christopher Ngan & Junjiang Sun & Yuefeng Li & Zhiqian Lu & Hui, 2022. "Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Jongchan Woo & Seungmee Jung & Seongbeom Kim & Yurong Li & Hyunjung Chung & Tatiana V. Roubtsova & Honghong Zhang & Celine Caseys & Dan Kliebenstein & Kyung-Nam Kim & Richard M. Bostock & Yong-Hwan Le, 2024. "Attenuation of phytofungal pathogenicity of Ascomycota by autophagy modulators," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Stamatis Papathanasiou & Styliani Markoulaki & Logan J. Blaine & Mitchell L. Leibowitz & Cheng-Zhong Zhang & Rudolf Jaenisch & David Pellman, 2021. "Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    9. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Sébastien Levesque & Diana Mayorga & Jean-Philippe Fiset & Claudia Goupil & Alexis Duringer & Andréanne Loiselle & Eva Bouchard & Daniel Agudelo & Yannick Doyon, 2022. "Marker-free co-selection for successive rounds of prime editing in human cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. J. Ferreira da Silva & G. P. Oliveira & E. A. Arasa-Verge & C. Kagiou & A. Moretton & G. Timelthaler & J. Jiricny & J. I. Loizou, 2022. "Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Matteo Ciciani & Michele Demozzi & Eleonora Pedrazzoli & Elisabetta Visentin & Laura Pezzè & Lorenzo Federico Signorini & Aitor Blanco-Miguez & Moreno Zolfo & Francesco Asnicar & Antonio Casini & Anna, 2022. "Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Dan Liang & Aleksei Mikhalchenko & Hong Ma & Nuria Marti Gutierrez & Tailai Chen & Yeonmi Lee & Sang-Wook Park & Rebecca Tippner-Hedges & Amy Koski & Hayley Darby & Ying Li & Crystal Dyken & Han Zhao , 2023. "Limitations of gene editing assessments in human preimplantation embryos," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Ida Friis & Ilia A Solov’yov, 2018. "Activation of the DNA-repair mechanism through NBS1 and MRE11 diffusion," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-16, July.
    15. Patrizia Tornabene & Rita Ferla & Manel Llado-Santaeularia & Miriam Centrulo & Margherita Dell’Anno & Federica Esposito & Elena Marrocco & Emanuela Pone & Renato Minopoli & Carolina Iodice & Edoardo N, 2022. "Therapeutic homology-independent targeted integration in retina and liver," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Yogesh K. Gupta & Francismar C. Marcelino-Guimarães & Cécile Lorrain & Andrew Farmer & Sajeet Haridas & Everton Geraldo Capote Ferreira & Valéria S. Lopes-Caitar & Liliane Santana Oliveira & Emmanuell, 2023. "Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Angel Rivera-Calzada & Raquel Arribas-Bosacoma & Alba Ruiz-Ramos & Paloma Escudero-Bravo & Jasminka Boskovic & Rafael Fernandez-Leiro & Antony W. Oliver & Laurence H. Pearl & Oscar Llorca, 2022. "Structural basis for the inactivation of cytosolic DNA sensing by the vaccinia virus," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Sebald A. N. Verkuijl & Estela Gonzalez & Ming Li & Joshua X. D. Ang & Nikolay P. Kandul & Michelle A. E. Anderson & Omar S. Akbari & Michael B. Bonsall & Luke Alphey, 2022. "A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34736-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.