IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34242-4.html
   My bibliography  Save this article

Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma

Author

Listed:
  • Sruthi Ravindranathan

    (Emory University School of Medicine
    Emory University)

  • Tenzin Passang

    (Emory University School of Medicine
    Emory University)

  • Jian-Ming Li

    (Emory University School of Medicine
    Emory University)

  • Shuhua Wang

    (Emory University School of Medicine
    Emory University)

  • Rohan Dhamsania

    (Emory University School of Medicine
    Emory University)

  • Michael Brandon Ware

    (Emory University School of Medicine
    Emory University)

  • Mohammad Y. Zaidi

    (Emory University School of Medicine
    Emory University)

  • Jingru Zhu

    (Emory University School of Medicine
    Emory University)

  • Maria Cardenas

    (Emory University School of Medicine)

  • Yuan Liu

    (Emory University
    Emory University)

  • Sanjeev Gumber

    (Emory University School of Medicine
    Emory University)

  • Brian Robinson

    (Emory University School of Medicine)

  • Anish Sen-Majumdar

    (Cambium Oncology LLC)

  • Hanwen Zhang

    (Emory University School of Medicine)

  • Shanmuganathan Chandrakasan

    (Emory University)

  • Haydn Kissick

    (Emory University
    Emory University School of Medicine
    Emory University)

  • Alan B. Frey

    (Cambium Oncology LLC)

  • Susan N. Thomas

    (Georgia Institute of Technology
    Georgia Institute of Technology)

  • Bassel F. El-Rayes

    (Emory University School of Medicine
    Emory University)

  • Gregory B. Lesinski

    (Emory University School of Medicine
    Emory University)

  • Edmund K. Waller

    (Emory University School of Medicine
    Emory University)

Abstract

A paucity of effector T cells within tumors renders pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint therapies. While several under-development approaches target immune-suppressive cells in the tumor microenvironment, there is less focus on improving T cell function. Here we show that inhibiting vasoactive intestinal peptide receptor (VIP-R) signaling enhances anti-tumor immunity in murine PDAC models. In silico data mining and immunohistochemistry analysis of primary tumors indicate overexpression of the neuropeptide vasoactive intestinal peptide (VIP) in human PDAC tumors. Elevated VIP levels are also present in PDAC patient plasma and supernatants of cultured PDAC cells. Furthermore, T cells up-regulate VIP receptors after activation, identifying the VIP signaling pathway as a potential target to enhance T cell function. In mouse PDAC models, VIP-R antagonist peptides synergize with anti-PD-1 antibody treatment in improving T cell recruitment into the tumors, activation of tumor-antigen-specific T cells, and inhibition of T cell exhaustion. In contrast to the limited single-agent activity of anti-PD1 antibodies or VIP-R antagonist peptides, combining both therapies eliminate tumors in up to 40% of animals. Furthermore, tumor-free mice resist tumor re-challenge, indicating anti-cancer immunological memory generation. VIP-R signaling thus represents a tumor-protective immune-modulatory pathway that is targetable in PDAC.

Suggested Citation

  • Sruthi Ravindranathan & Tenzin Passang & Jian-Ming Li & Shuhua Wang & Rohan Dhamsania & Michael Brandon Ware & Mohammad Y. Zaidi & Jingru Zhu & Maria Cardenas & Yuan Liu & Sanjeev Gumber & Brian Robin, 2022. "Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34242-4
    DOI: 10.1038/s41467-022-34242-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34242-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34242-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Caroline S. Jansen & Nataliya Prokhnevska & Viraj A. Master & Martin G. Sanda & Jennifer W. Carlisle & Mehmet Asim Bilen & Maria Cardenas & Scott Wilkinson & Ross Lake & Adam G. Sowalsky & Rajesh M. V, 2019. "An intra-tumoral niche maintains and differentiates stem-like CD8 T cells," Nature, Nature, vol. 576(7787), pages 465-470, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Guan & Bin Wu & Ting Li & Lynn A. Beer & Gaurav Sharma & Mingyue Li & Chin Nien Lee & Shujing Liu & Changsong Yang & Lili Huang & Dennie T. Frederick & Genevieve M. Boland & Guangcan Shao & Tatyan, 2022. "HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jia-Cheng Lu & Lei-Lei Wu & Yi-Ning Sun & Xiao-Yong Huang & Chao Gao & Xiao-Jun Guo & Hai-Ying Zeng & Xu-Dong Qu & Yi Chen & Dong Wu & Yan-Zi Pei & Xian-Long Meng & Yi-Min Zheng & Chen Liang & Peng-Fe, 2024. "Macro CD5L+ deteriorates CD8+T cells exhaustion and impairs combination of Gemcitabine-Oxaliplatin-Lenvatinib-anti-PD1 therapy in intrahepatic cholangiocarcinoma," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Alessandra Castiglioni & Yagai Yang & Katherine Williams & Alvin Gogineni & Ryan S. Lane & Amber W. Wang & Justin A. Shyer & Zhe Zhang & Stephanie Mittman & Alan Gutierrez & Jillian L. Astarita & Minh, 2023. "Combined PD-L1/TGFβ blockade allows expansion and differentiation of stem cell-like CD8 T cells in immune excluded tumors," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Siqi Li & Kun Li & Kang Wang & Haoyuan Yu & Xiangyang Wang & Mengchen Shi & Zhixing Liang & Zhou Yang & Yongwei Hu & Yang Li & Wei Liu & Hua Li & Shuqun Cheng & Linsen Ye & Yang Yang, 2023. "Low-dose radiotherapy combined with dual PD-L1 and VEGFA blockade elicits antitumor response in hepatocellular carcinoma mediated by activated intratumoral CD8+ exhausted-like T cells," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Solhwi Lee & Kunhee Lee & Hyeonjin Bae & Kyungmin Lee & Junghwa Lee & Junhui Ma & Ye Ji Lee & Bo Ryeong Lee & Woong-Yang Park & Se Jin Im, 2023. "Defining a TCF1-expressing progenitor allogeneic CD8+ T cell subset in acute graft-versus-host disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Hussein A. Abbas & Dapeng Hao & Katarzyna Tomczak & Praveen Barrodia & Jin Seon Im & Patrick K. Reville & Zoe Alaniz & Wei Wang & Ruiping Wang & Feng Wang & Gheath Al-Atrash & Koichi Takahashi & Jing , 2021. "Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Xiaoqiong Zhang & Zhaohan Wei & Tuying Yong & Shiyu Li & Nana Bie & Jianye Li & Xin Li & Haojie Liu & Hang Xu & Yuchen Yan & Bixiang Zhang & Xiaoping Chen & Xiangliang Yang & Lu Gan, 2023. "Cell microparticles loaded with tumor antigen and resiquimod reprogram tumor-associated macrophages and promote stem-like CD8+ T cells to boost anti-PD-1 therapy," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34242-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.