Author
Listed:
- Aristeidis G. Telonis
(University of Miami Miller School of Medicine
University of Miami Miller School of Medicine)
- Qin Yang
(University of Miami Miller School of Medicine
University of Miami Miller School of Medicine)
- Hsuan-Ting Huang
(University of Miami Miller School of Medicine
University of Miami Miller School of Medicine)
- Maria E. Figueroa
(University of Miami Miller School of Medicine
University of Miami Miller School of Medicine)
Abstract
DNMT3A and IDH1/2 mutations combinatorically regulate the transcriptome and the epigenome in acute myeloid leukemia; yet the mechanisms of this interplay are unknown. Using a systems approach within topologically associating domains, we find that genes with significant expression-methylation correlations are enriched in signaling and metabolic pathways. The common denominator across these methylation-regulated genes is the density in MIR retrotransposons of their introns. Moreover, a discrete number of CpGs overlapping enhancers are responsible for regulating most of these genes. Established mouse models recapitulate the dependency of MIR-rich genes on the balanced expression of epigenetic modifiers, while projection of leukemic profiles onto normal hematopoiesis ones further consolidates the dependencies of methylation-regulated genes on MIRs. Collectively, MIR elements on genes and enhancers are susceptible to changes in DNA methylation activity and explain the cooperativity of proteins in this pathway in normal and malignant hematopoiesis.
Suggested Citation
Aristeidis G. Telonis & Qin Yang & Hsuan-Ting Huang & Maria E. Figueroa, 2022.
"MIR retrotransposons link the epigenome and the transcriptome of coding genes in acute myeloid leukemia,"
Nature Communications, Nature, vol. 13(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34211-x
DOI: 10.1038/s41467-022-34211-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34211-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.