IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34068-0.html
   My bibliography  Save this article

Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study

Author

Listed:
  • Manina M. Etter

    (University of Basel)

  • Tomás A. Martins

    (University of Basel)

  • Laila Kulsvehagen

    (University of Basel)

  • Elisabeth Pössnecker

    (University of Basel)

  • Wandrille Duchemin

    (University of Basel)

  • Sabrina Hogan

    (University of Basel)

  • Gretel Sanabria-Diaz

    (University of Basel)

  • Jannis Müller

    (University of Basel
    University Hospital Basel)

  • Alessio Chiappini

    (University Hospital Basel)

  • Jonathan Rychen

    (University Hospital Basel)

  • Noëmi Eberhard

    (University Hospital Basel)

  • Raphael Guzman

    (University Hospital Basel
    University Hospital Basel)

  • Luigi Mariani

    (University Hospital Basel
    University Hospital Basel)

  • Lester Melie-Garcia

    (University of Basel
    University Hospital Basel)

  • Emanuela Keller

    (University Hospital Zurich)

  • Ilijas Jelcic

    (University Hospital Zurich)

  • Hans Pargger

    (University Hospital Basel)

  • Martin Siegemund

    (University Hospital Basel)

  • Jens Kuhle

    (University Hospital Basel)

  • Johanna Oechtering

    (University of Basel
    University Hospital Basel)

  • Caroline Eich

    (University of Basel)

  • Alexandar Tzankov

    (University of Basel)

  • Matthias S. Matter

    (University of Basel)

  • Sarp Uzun

    (University of Basel)

  • Özgür Yaldizli

    (University of Basel)

  • Johanna M. Lieb

    (University Hospital Basel)

  • Marios-Nikos Psychogios

    (University Hospital Basel)

  • Karoline Leuzinger

    (University Hospital Basel
    University Hospital Basel)

  • Hans H. Hirsch

    (University Hospital Basel
    University of Basel
    University Hospital Basel)

  • Cristina Granziera

    (University of Basel
    University Hospital Basel)

  • Anne-Katrin Pröbstel

    (University of Basel)

  • Gregor Hutter

    (University of Basel
    University Hospital Basel
    University Hospital Basel)

Abstract

Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.

Suggested Citation

  • Manina M. Etter & Tomás A. Martins & Laila Kulsvehagen & Elisabeth Pössnecker & Wandrille Duchemin & Sabrina Hogan & Gretel Sanabria-Diaz & Jannis Müller & Alessio Chiappini & Jonathan Rychen & Noëmi , 2022. "Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34068-0
    DOI: 10.1038/s41467-022-34068-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34068-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34068-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. J. Ryan & A. M. Ahern & R. S. Fitzgerald & E. J. Laserna-Mendieta & E. M. Power & A. G. Clooney & K. W. O’Donoghue & P. J. McMurdie & S. Iwai & A. Crits-Christoph & D. Sheehan & C. Moran & B. Fleme, 2020. "Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Matthieu Perreau & Madeleine Suffiotti & Pedro Marques-Vidal & Aurelie Wiedemann & Yves Levy & Cédric Laouénan & Jade Ghosn & Craig Fenwick & Denis Comte & Thierry Roger & Jean Regina & Peter Vollenwe, 2021. "The cytokines HGF and CXCL13 predict the severity and the mortality in COVID-19 patients," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Andrew C. Yang & Fabian Kern & Patricia M. Losada & Maayan R. Agam & Christina A. Maat & Georges P. Schmartz & Tobias Fehlmann & Julian A. Stein & Nicholas Schaum & Davis P. Lee & Kruti Calcuttawala &, 2021. "Dysregulation of brain and choroid plexus cell types in severe COVID-19," Nature, Nature, vol. 595(7868), pages 565-571, July.
    4. Sarah Esther Chang & Allan Feng & Wenzhao Meng & Sokratis A. Apostolidis & Elisabeth Mack & Maja Artandi & Linda Barman & Kate Bennett & Saborni Chakraborty & Iris Chang & Peggie Cheung & Sharon Chint, 2021. "New-onset IgG autoantibodies in hospitalized patients with COVID-19," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Andrew C. Yang & Fabian Kern & Patricia M. Losada & Maayan R. Agam & Christina A. Maat & Georges P. Schmartz & Tobias Fehlmann & Julian A. Stein & Nicholas Schaum & Davis P. Lee & Kruti Calcuttawala &, 2021. "Publisher Correction: Dysregulation of brain and choroid plexus cell types in severe COVID-19," Nature, Nature, vol. 598(7882), pages 4-4, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirren Charnley & Saba Islam & Guneet K. Bindra & Jeremy Engwirda & Julian Ratcliffe & Jiangtao Zhou & Raffaele Mezzenga & Mark D. Hulett & Kyunghoon Han & Joshua T. Berryman & Nicholas P. Reynolds, 2022. "Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Katrin Müller & Iris Poppele & Marcel Ottiger & Katharina Zwingmann & Ivo Berger & Andreas Thomas & Alois Wastlhuber & Franziska Ortwein & Anna-Lena Schultz & Anna Weghofer & Eva Wilhelm & Rainer-Chri, 2023. "Impact of Rehabilitation on Physical and Neuropsychological Health of Patients Who Acquired COVID-19 in the Workplace," IJERPH, MDPI, vol. 20(2), pages 1-21, January.
    3. Guilherme Dias de Melo & Victoire Perraud & Flavio Alvarez & Alba Vieites-Prado & Seonhee Kim & Lauriane Kergoat & Anthony Coleon & Bettina Salome Trüeb & Magali Tichit & Aurèle Piazza & Agnès Thierry, 2023. "Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Cecilia Fahlquist-Hagert & Thomas R. Wittenborn & Ewa Terczyńska-Dyla & Kristian Savstrup Kastberg & Emily Yang & Alysa Nicole Rallistan & Quinton Raymond Markett & Gudrun Winther & Sofie Fonager & La, 2023. "Antigen presentation by B cells enables epitope spreading across an MHC barrier," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    5. Otavio Cabral-Marques & Gilad Halpert & Lena F. Schimke & Yuri Ostrinski & Aristo Vojdani & Gabriela Crispim Baiocchi & Paula Paccielli Freire & Igor Salerno Filgueiras & Israel Zyskind & Miriam T. La, 2022. "Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jakob Ankerhold & Sebastian Giese & Philipp Kolb & Andrea Maul-Pavicic & Reinhard E. Voll & Nathalie Göppert & Kevin Ciminski & Clemens Kreutz & Achim Lother & Ulrich Salzer & Wolfgang Bildl & Tim Wel, 2022. "Circulating multimeric immune complexes contribute to immunopathology in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Benedict D. Michael & Cordelia Dunai & Edward J. Needham & Kukatharmini Tharmaratnam & Robyn Williams & Yun Huang & Sarah A. Boardman & Jordan J. Clark & Parul Sharma & Krishanthi Subramaniam & Greta , 2023. "Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Jillian R. Jaycox & Carolina Lucas & Inci Yildirim & Yile Dai & Eric Y. Wang & Valter Monteiro & Sandra Lord & Jeffrey Carlin & Mariko Kita & Jane H. Buckner & Shuangge Ma & Melissa Campbell & Albert , 2023. "SARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Hideki Ogura & Jin Gohda & Xiuyuan Lu & Mizuki Yamamoto & Yoshio Takesue & Aoi Son & Sadayuki Doi & Kazuyuki Matsushita & Fumitaka Isobe & Yoshihiro Fukuda & Tai-Ping Huang & Takamasa Ueno & Naomi Mam, 2022. "Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Al Ozonoff & Naresh Doni Jayavelu & Shanshan Liu & Esther Melamed & Carly E. Milliren & Jingjing Qi & Linda N. Geng & Grace A. McComsey & Charles B. Cairns & Lindsey R. Baden & Joanna Schaenman & Albe, 2024. "Features of acute COVID-19 associated with post-acute sequelae of SARS-CoV-2 phenotypes: results from the IMPACC study," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34068-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.