IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33837-1.html
   My bibliography  Save this article

Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy

Author

Listed:
  • Gang He

    (Shenzhen University Health Science Center)

  • Yashi Li

    (Shenzhen University Health Science Center)

  • Muhammad Rizwan Younis

    (Shenzhen University Health Science Center)

  • Lian-Hua Fu

    (Shenzhen University Health Science Center)

  • Ting He

    (Shenzhen University Health Science Center)

  • Shan Lei

    (Shenzhen University Health Science Center)

  • Jing Lin

    (Shenzhen University Health Science Center)

  • Peng Huang

    (Shenzhen University Health Science Center)

Abstract

5-Aminolevulinic acid-based photodynamic therapy heavily depends on the biological transformation efficiency of 5-aminolevulinic acid to protoporphyrin IX, while the lack of an effective delivery system and imaging navigation are major hurdles in improving the accumulation of protoporphyrin IX and optimizing therapeutic parameters. Herein, we leverage a synthetic biology approach to construct a transdermal theranostic microneedle patch integrated with 5-aminolevulinic acid and catalase co-loaded tumor acidity-responsive copper-doped calcium phosphate nanoparticles for efficient 5-aminolevulinic acid-based photodynamic therapy by maximizing the enrichment of intratumoral protoporphyrin IX. We show that continuous oxygen generation by catalase in vivo reverses tumor hypoxia, enhances protoporphyrin IX accumulation by blocking protoporphyrin IX efflux (downregulating hypoxia-inducible factor-1α and ferrochelatase) and upregulates protoporphyrin IX biosynthesis (providing exogenous 5-aminolevulinic acid and upregulating ALA-synthetase). In vivo fluorescence/photoacoustic duplex imaging can monitor intratumoral oxygen saturation and protoporphyrin IX metabolic kinetics simultaneously. This approach thus facilitates the optimization of therapeutic parameters for different cancers to realize Ca2+/Cu2+-interferences-enhanced repeatable photodynamic therapy, making this theranostic patch promising for clinical practice.

Suggested Citation

  • Gang He & Yashi Li & Muhammad Rizwan Younis & Lian-Hua Fu & Ting He & Shan Lei & Jing Lin & Peng Huang, 2022. "Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33837-1
    DOI: 10.1038/s41467-022-33837-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33837-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33837-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dongdong Wang & Huihui Wu & Soo Zeng Fiona Phua & Guangbao Yang & Wei Qi Lim & Long Gu & Cheng Qian & Haibao Wang & Zhen Guo & Hongzhong Chen & Yanli Zhao, 2020. "Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Yuanpei Li & Tzu-yin Lin & Yan Luo & Qiangqiang Liu & Wenwu Xiao & Wenchang Guo & Diana Lac & Hongyong Zhang & Caihong Feng & Sebastian Wachsmann-Hogiu & Jeffrey H. Walton & Simon R. Cherry & Douglas , 2014. "A smart and versatile theranostic nanomedicine platform based on nanoporphyrin," Nature Communications, Nature, vol. 5(1), pages 1-15, December.
    3. Guangbao Yang & Ligeng Xu & Yu Chao & Jun Xu & Xiaoqi Sun & Yifan Wu & Rui Peng & Zhuang Liu, 2017. "Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    4. Yuhao Cheng & Hao Cheng & Chenxiao Jiang & Xuefeng Qiu & Kaikai Wang & Wei Huan & Ahu Yuan & Jinhui Wu & Yiqiao Hu, 2015. "Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    5. Weier Bao & Ming Liu & Jiaqi Meng & Siyuan Liu & Shuang Wang & Rongrong Jia & Yugang Wang & Guanghui Ma & Wei Wei & Zhiyuan Tian, 2021. "MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    6. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Xing Qin & Chu Wu & Dechao Niu & Limei Qin & Xia Wang & Qigang Wang & Yongsheng Li, 2021. "Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Conghui Liu & Yu Cao & Yaru Cheng & Dongdong Wang & Tailin Xu & Lei Su & Xueji Zhang & Haifeng Dong, 2020. "An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    9. Wei Chen & Rui Tian & Can Xu & Bryant C. Yung & Guohao Wang & Yijing Liu & Qianqian Ni & Fuwu Zhang & Zijian Zhou & Jingjing Wang & Gang Niu & Ying Ma & Liwu Fu & Xiaoyuan Chen, 2017. "Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongdong Wang & Jiawei Liu & Changlai Wang & Weiyun Zhang & Guangbao Yang & Yun Chen & Xiaodong Zhang & Yinglong Wu & Long Gu & Hongzhong Chen & Wei Yuan & Xiaokai Chen & Guofeng Liu & Bin Gao & Qianw, 2023. "Microbial synthesis of Prussian blue for potentiating checkpoint blockade immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Yang Yang & Jinshu Huang & Wei Wei & Qin Zeng & Xipeng Li & Da Xing & Bo Zhou & Tao Zhang, 2022. "Switching the NIR upconversion of nanoparticles for the orthogonal activation of photoacoustic imaging and phototherapy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Weicheng Shen & Tingting Hu & Xueyan Liu & Jiajia Zha & Fanqi Meng & Zhikang Wu & Zhuolin Cui & Yu Yang & Hai Li & Qinghua Zhang & Lin Gu & Ruizheng Liang & Chaoliang Tan, 2022. "Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Liu-Chun Wang & Pei-Yu Chiou & Ya-Ping Hsu & Chin-Lai Lee & Chih-Hsuan Hung & Yi-Hsuan Wu & Wen-Jyun Wang & Gia-Ling Hsieh & Ying-Chi Chen & Li-Chan Chang & Wen-Pin Su & Divinah Manoharan & Min-Chiao , 2023. "Prussian blue analog with separated active sites to catalyze water driven enhanced catalytic treatments," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Jianwen Song & Xiaoying Kang & Lu Wang & Dan Ding & Deling Kong & Wen Li & Ji Qi, 2023. "Near-infrared-II photoacoustic imaging and photo-triggered synergistic treatment of thrombosis via fibrin-specific homopolymer nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Ziyang Cao & Dongdong Li & Liang Zhao & Mengting Liu & Pengyue Ma & Yingli Luo & Xianzhu Yang, 2022. "Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Yue Zhao & Shanliang Song & Dongdong Wang & He Liu & Junmin Zhang & Zuhao Li & Jincheng Wang & Xiangzhong Ren & Yanli Zhao, 2022. "Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Xin Guan & Liping Sun & Yuting Shen & Fengshan Jin & Xiaowan Bo & Chunyan Zhu & Xiaoxia Han & Xiaolong Li & Yu Chen & Huixiong Xu & Wenwen Yue, 2022. "Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to limit post-surgical cancer recurrence and metastasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Chi Yao & Yuwei Xu & Jianpu Tang & Pin Hu & Hedong Qi & Dayong Yang, 2022. "Dynamic assembly of DNA-ceria nanocomplex in living cells generates artificial peroxisome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Yufu Tang & Yuanyuan Li & Bowen Li & Wentao Song & Guobin Qi & Jianwu Tian & Wei Huang & Quli Fan & Bin Liu, 2024. "Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Xiaotu Ma & Xiaolong Liang & Meinan Yao & Yu Gao & Qi Luo & Xiaoda Li & Yue Yu & Yining Sun & Miffy H. Y. Cheng & Juan Chen & Gang Zheng & Jiyun Shi & Fan Wang, 2023. "Myoglobin-loaded gadolinium nanotexaphyrins for oxygen synergy and imaging-guided radiosensitization therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Ying Huang & Geng Qin & TingTing Cui & Chuanqi Zhao & Jinsong Ren & Xiaogang Qu, 2023. "A bimetallic nanoplatform for STING activation and CRISPR/Cas mediated depletion of the methionine transporter in cancer cells restores anti-tumor immune responses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Zhuo-Ran Yang & Huinan Suo & Jing-Wen Fan & Niannian Lv & Kehan Du & Teng Ma & Huimin Qin & Yan Li & Liu Yang & Nuoya Zhou & Hao Jiang & Juan Tao & Jintao Zhu, 2024. "Endogenous stimuli-responsive separating microneedles to inhibit hypertrophic scar through remodeling the pathological microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Shaofang Zhang & Yonghui Li & Si Sun & Ling Liu & Xiaoyu Mu & Shuhu Liu & Menglu Jiao & Xinzhu Chen & Ke Chen & Huizhen Ma & Tuo Li & Xiaoyu Liu & Hao Wang & Jianning Zhang & Jiang Yang & Xiao-Dong Zh, 2022. "Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Yihang Wang & Zeka Chen & Brayden Davis & Will Lipman & Sicheng Xing & Lin Zhang & Tian Wang & Priyash Hafiz & Wanrong Xie & Zijie Yan & Zhili Huang & Juan Song & Wubin Bai, 2024. "Digital automation of transdermal drug delivery with high spatiotemporal resolution," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    17. Hongwei Lu & An Chen & Xindan Zhang & Zixiang Wei & Rong Cao & Yi Zhu & Jingxiong Lu & Zhongling Wang & Leilei Tian, 2022. "A pH-responsive T1-T2 dual-modal MRI contrast agent for cancer imaging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33837-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.