IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33575-4.html
   My bibliography  Save this article

Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry

Author

Listed:
  • Tom Dixon

    (Roivant Discovery
    Michigan State University
    Michigan State University)

  • Derek MacPherson

    (Roivant Discovery)

  • Barmak Mostofian

    (Roivant Discovery)

  • Taras Dauzhenka

    (Roivant Discovery)

  • Samuel Lotz

    (Roivant Discovery)

  • Dwight McGee

    (Roivant Discovery)

  • Sharon Shechter

    (Roivant Discovery)

  • Utsab R. Shrestha

    (Roivant Discovery)

  • Rafal Wiewiora

    (Roivant Discovery)

  • Zachary A. McDargh

    (Roivant Discovery)

  • Fen Pei

    (Roivant Discovery)

  • Rajat Pal

    (Roivant Discovery)

  • João V. Ribeiro

    (Roivant Discovery)

  • Tanner Wilkerson

    (Roivant Discovery)

  • Vipin Sachdeva

    (Roivant Discovery)

  • Ning Gao

    (Roivant Discovery)

  • Shourya Jain

    (Roivant Discovery)

  • Samuel Sparks

    (Roivant Discovery)

  • Yunxing Li

    (Roivant Discovery)

  • Alexander Vinitsky

    (Roivant Discovery)

  • Xin Zhang

    (Roivant Discovery)

  • Asghar M. Razavi

    (Roivant Discovery)

  • István Kolossváry

    (Roivant Discovery)

  • Jason Imbriglio

    (Roivant Discovery)

  • Artem Evdokimov

    (Roivant Discovery)

  • Louise Bergeron

    (Roivant Discovery)

  • Wenchang Zhou

    (Roivant Discovery)

  • Jagat Adhikari

    (Roivant Discovery)

  • Benjamin Ruprecht

    (Roivant Discovery)

  • Alex Dickson

    (Michigan State University
    Michigan State University)

  • Huafeng Xu

    (Roivant Discovery)

  • Woody Sherman

    (Roivant Discovery)

  • Jesus A. Izaguirre

    (Roivant Discovery)

Abstract

Targeted protein degradation (TPD) is a promising approach in drug discovery for degrading proteins implicated in diseases. A key step in this process is the formation of a ternary complex where a heterobifunctional molecule induces proximity of an E3 ligase to a protein of interest (POI), thus facilitating ubiquitin transfer to the POI. In this work, we characterize 3 steps in the TPD process. (1) We simulate the ternary complex formation of SMARCA2 bromodomain and VHL E3 ligase by combining hydrogen-deuterium exchange mass spectrometry with weighted ensemble molecular dynamics (MD). (2) We characterize the conformational heterogeneity of the ternary complex using Hamiltonian replica exchange simulations and small-angle X-ray scattering. (3) We assess the ubiquitination of the POI in the context of the full Cullin-RING Ligase, confirming experimental ubiquitinomics results. Differences in degradation efficiency can be explained by the proximity of lysine residues on the POI relative to ubiquitin.

Suggested Citation

  • Tom Dixon & Derek MacPherson & Barmak Mostofian & Taras Dauzhenka & Samuel Lotz & Dwight McGee & Sharon Shechter & Utsab R. Shrestha & Rafal Wiewiora & Zachary A. McDargh & Fen Pei & Rajat Pal & João , 2022. "Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33575-4
    DOI: 10.1038/s41467-022-33575-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33575-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33575-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kheewoong Baek & David T. Krist & J. Rajan Prabu & Spencer Hill & Maren Klügel & Lisa-Marie Neumaier & Susanne Gronau & Gary Kleiger & Brenda A. Schulman, 2020. "NEDD8 nucleates a multivalent cullin–RING–UBE2D ubiquitin ligation assembly," Nature, Nature, vol. 578(7795), pages 461-466, February.
    2. Wai-Ching Hon & Michael I. Wilson & Karl Harlos & Timothy D. W. Claridge & Christopher J. Schofield & Christopher W. Pugh & Patrick H. Maxwell & Peter J. Ratcliffe & David I. Stuart & E. Yvonne Jones, 2002. "Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL," Nature, Nature, vol. 417(6892), pages 975-978, June.
    3. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco R Fields & Niraja Suresh & Morgan Hiller & Stefan D Freed & Kasturi Haldar & Shaun W Lee, 2020. "Algorithmic assessment of missense mutation severity in the Von-Hippel Lindau protein," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-19, November.
    2. Andreas Mardt & Tim Hempel & Cecilia Clementi & Frank Noé, 2022. "Deep learning to decompose macromolecules into independent Markovian domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Shana Bergman & Rosemary J. Cater & Ambrose Plante & Filippo Mancia & George Khelashvili, 2023. "Substrate binding-induced conformational transitions in the omega-3 fatty acid transporter MFSD2A," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Kuang-Ting Ko & Frank Lennartz & David Mekhaiel & Bora Guloglu & Arianna Marini & Danielle J. Deuker & Carole A. Long & Matthijs M. Jore & Kazutoyo Miura & Sumi Biswas & Matthew K. Higgins, 2022. "Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Do Hoon Kwon & Feng Zhang & Brett A. McCray & Shasha Feng & Meha Kumar & Jeremy M. Sullivan & Wonpil Im & Charlotte J. Sumner & Seok-Yong Lee, 2023. "TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Ritaban Halder & Daniel A. Nissley & Ian Sitarik & Yang Jiang & Yiyun Rao & Quyen V. Vu & Mai Suan Li & Justin Pritchard & Edward P. O’Brien, 2023. "How soluble misfolded proteins bypass chaperones at the molecular level," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Giacomo Janson & Gilberto Valdes-Garcia & Lim Heo & Michael Feig, 2023. "Direct generation of protein conformational ensembles via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Rodrigo G. Fernandez Lahore & Niccolò P. Pampaloni & Enrico Schiewer & M.-Marcel Heim & Linda Tillert & Johannes Vierock & Johannes Oppermann & Jakob Walther & Dietmar Schmitz & David Owald & Andrew J, 2022. "Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Yi-Tzu Kuo & Amanda Souza Câmara & Veit Schubert & Pavel Neumann & Jiří Macas & Michael Melzer & Jianyong Chen & Jörg Fuchs & Simone Abel & Evelyn Klocke & Bruno Huettel & Axel Himmelbach & Dmitri Dem, 2023. "Holocentromeres can consist of merely a few megabase-sized satellite arrays," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. S. M. Ayala Mariscal & M. L. Pigazzini & Y. Richter & M. Özel & I. L. Grothaus & J. Protze & K. Ziege & M. Kulke & M. ElBediwi & J. V. Vermaas & L. Colombi Ciacchi & S. Köppen & F. Liu & J. Kirstein, 2022. "Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
    14. Xiangwei Wu & Yunxiang Du & Lu-Jun Liang & Ruichao Ding & Tianyi Zhang & Hongyi Cai & Xiaolin Tian & Man Pan & Lei Liu, 2024. "Structure-guided engineering enables E3 ligase-free and versatile protein ubiquitination via UBE2E1," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Nicolas Papadopoulos & Audrey Nédélec & Allison Derenne & Teodor Asvadur Şulea & Christian Pecquet & Ilyas Chachoua & Gaëlle Vertenoeil & Thomas Tilmant & Andrei-Jose Petrescu & Gabriel Mazzucchelli &, 2023. "Oncogenic CALR mutant C-terminus mediates dual binding to the thrombopoietin receptor triggering complex dimerization and activation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Anthony J. Asmar & Shaun R. Abrams & Jenny Hsin & Jason C. Collins & Rita M. Yazejian & Youmei Wu & Jean Cho & Andrew D. Doyle & Samhitha Cinthala & Marleen Simon & Richard H. Jaarsveld & David B. Bec, 2023. "A ubiquitin-based effector-to-inhibitor switch coordinates early brain, craniofacial, and skin development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Joseph G. Beton & Thomas Mulvaney & Tristan Cragnolini & Maya Topf, 2024. "Cryo-EM structure and B-factor refinement with ensemble representation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Re’em Moskovitz & Tossapol Pholcharee & Sophia M. DonVito & Bora Guloglu & Edward Lowe & Franziska Mohring & Robert W. Moon & Matthew K. Higgins, 2023. "Structural basis for DARC binding in reticulocyte invasion by Plasmodium vivax," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Fenglei Li & Qiaoyu Hu & Xianglei Zhang & Renhong Sun & Zhuanghua Liu & Sanan Wu & Siyuan Tian & Xinyue Ma & Zhizhuo Dai & Xiaobao Yang & Shenghua Gao & Fang Bai, 2022. "DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Amy Rice & Sourav Haldar & Eric Wang & Paul S. Blank & Sergey A. Akimov & Timur R. Galimzyanov & Richard W. Pastor & Joshua Zimmerberg, 2022. "Planar aggregation of the influenza viral fusion peptide alters membrane structure and hydration, promoting poration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33575-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.