IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33093-3.html
   My bibliography  Save this article

Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease

Author

Listed:
  • M d Mesbah Uddin

    (Broad Institute of Harvard and MIT
    Massachusetts General Hospital)

  • Ngoc Quynh H. Nguyen

    (The University of Texas Health Science Center at Houston)

  • Bing Yu

    (The University of Texas Health Science Center at Houston)

  • Jennifer A. Brody

    (University of Washington)

  • Akhil Pampana

    (Broad Institute of Harvard and MIT)

  • Tetsushi Nakao

    (Broad Institute of Harvard and MIT
    Massachusetts General Hospital
    Dana-Farber Cancer Institute
    Brigham and Women’s Hospital)

  • Myriam Fornage

    (University of Texas Health Science Center at Houston
    University of Texas Health Science Center at Houston)

  • Jan Bressler

    (The University of Texas Health Science Center at Houston
    University of Texas Health Science Center at Houston)

  • Nona Sotoodehnia

    (University of Washington)

  • Joshua S. Weinstock

    (University of Michigan School of Public Health)

  • Michael C. Honigberg

    (Broad Institute of Harvard and MIT
    Massachusetts General Hospital)

  • Daniel Nachun

    (Stanford University School of Medicine)

  • Romit Bhattacharya

    (Broad Institute of Harvard and MIT
    Massachusetts General Hospital
    Harvard Medical School)

  • Gabriel K. Griffin

    (Dana-Farber Cancer Institute
    Brigham and Women’s Hospital
    Broad Institute of MIT and Harvard)

  • Varuna Chander

    (Baylor College of Medicine
    Baylor College of Medicine)

  • Richard A. Gibbs

    (Baylor College of Medicine
    Baylor College of Medicine)

  • Jerome I. Rotter

    (The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center)

  • Chunyu Liu

    (School of Public Health, Boston University
    Boston University and NHLBI/NIH)

  • Andrea A. Baccarelli

    (Columbia University)

  • Daniel I. Chasman

    (Harvard Medical School
    Brigham and Women’s Hospital)

  • Eric A. Whitsel

    (University of North Carolina
    University of North Carolina)

  • Douglas P. Kiel

    (Harvard Medical School
    Hebrew SeniorLife
    Beth Israel Deaconess Medical Center
    Broad Institute of Harvard and MIT)

  • Joanne M. Murabito

    (Boston University and NHLBI/NIH
    Boston University School of Medicine and Boston Medical Center)

  • Eric Boerwinkle

    (The University of Texas Health Science Center at Houston
    University of Texas Health Science Center at Houston
    Baylor College of Medicine)

  • Benjamin L. Ebert

    (Dana-Farber Cancer Institute
    Howard Hughes Medical Institute)

  • Siddhartha Jaiswal

    (Stanford University School of Medicine)

  • James S. Floyd

    (University of Washington
    University of Washington)

  • Alexander G. Bick

    (Vanderbilt University Medical Center)

  • Christie M. Ballantyne

    (Baylor College of Medicine)

  • Bruce M. Psaty

    (University of Washington
    University of Washington
    University of Washington)

  • Pradeep Natarajan

    (Broad Institute of Harvard and MIT
    Massachusetts General Hospital
    Harvard Medical School)

  • Karen N. Conneely

    (Emory University School of Medicine)

Abstract

Age-related changes to the genome-wide DNA methylation (DNAm) pattern observed in blood are well-documented. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by the age-related acquisition and expansion of leukemogenic mutations in hematopoietic stem cells (HSCs), is associated with blood cancer and coronary artery disease (CAD). Epigenetic regulators DNMT3A and TET2 are the two most frequently mutated CHIP genes. Here, we present results from an epigenome-wide association study for CHIP in 582 Cardiovascular Health Study (CHS) participants, with replication in 2655 Atherosclerosis Risk in Communities (ARIC) Study participants. We show that DNMT3A and TET2 CHIP have distinct and directionally opposing genome-wide DNAm association patterns consistent with their regulatory roles, albeit both promoting self-renewal of HSCs. Mendelian randomization analyses indicate that a subset of DNAm alterations associated with these two leading CHIP genes may promote the risk for CAD.

Suggested Citation

  • M d Mesbah Uddin & Ngoc Quynh H. Nguyen & Bing Yu & Jennifer A. Brody & Akhil Pampana & Tetsushi Nakao & Myriam Fornage & Jan Bressler & Nona Sotoodehnia & Joshua S. Weinstock & Michael C. Honigberg &, 2022. "Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33093-3
    DOI: 10.1038/s41467-022-33093-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33093-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33093-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adriaan Graaf & Annique Claringbould & Antoine Rimbert & Harm-Jan Westra & Yang Li & Cisca Wijmenga & Serena Sanna, 2020. "Mendelian randomization while jointly modeling cis genetics identifies causal relationships between gene expression and lipids," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Robert E. Thurman & Eric Rynes & Richard Humbert & Jeff Vierstra & Matthew T. Maurano & Eric Haugen & Nathan C. Sheffield & Andrew B. Stergachis & Hao Wang & Benjamin Vernot & Kavita Garg & Sam John &, 2012. "The accessible chromatin landscape of the human genome," Nature, Nature, vol. 489(7414), pages 75-82, September.
    3. Morten Tulstrup & Mette Soerensen & Jakob Werner Hansen & Linn Gillberg & Maria Needhamsen & Katja Kaastrup & Kristian Helin & Kaare Christensen & Joachim Weischenfeldt & Kirsten Grønbæk, 2021. "TET2 mutations are associated with hypermethylation at key regulatory enhancers in normal and malignant hematopoiesis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Michael Lawrence & Wolfgang Huber & Hervé Pagès & Patrick Aboyoun & Marc Carlson & Robert Gentleman & Martin T Morgan & Vincent J Carey, 2013. "Software for Computing and Annotating Genomic Ranges," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-10, August.
    5. Zhihong Zhu & Zhili Zheng & Futao Zhang & Yang Wu & Maciej Trzaskowski & Robert Maier & Matthew R. Robinson & John J. McGrath & Peter M. Visscher & Naomi R. Wray & Jian Yang, 2018. "Causal associations between risk factors and common diseases inferred from GWAS summary data," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    6. Alexander G. Bick & Joshua S. Weinstock & Satish K. Nandakumar & Charles P. Fulco & Erik L. Bao & Seyedeh M. Zekavat & Mindy D. Szeto & Xiaotian Liao & Matthew J. Leventhal & Joseph Nasser & Kyle Chan, 2020. "Inherited causes of clonal haematopoiesis in 97,691 whole genomes," Nature, Nature, vol. 586(7831), pages 763-768, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Tara N. Yankee & Sungryong Oh & Emma Wentworth Winchester & Andrea Wilderman & Kelsey Robinson & Tia Gordon & Jill A. Rosenfeld & Jennifer VanOudenhove & Daryl A. Scott & Elizabeth J. Leslie & Justin , 2023. "Integrative analysis of transcriptome dynamics during human craniofacial development identifies candidate disease genes," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    3. Alan Selewa & Kaixuan Luo & Michael Wasney & Linsin Smith & Xiaotong Sun & Chenwei Tang & Heather Eckart & Ivan P. Moskowitz & Anindita Basu & Xin He & Sebastian Pott, 2023. "Single-cell genomics improves the discovery of risk variants and genes of atrial fibrillation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Poonam Dhillon & Kelly Ann Mulholland & Hailong Hu & Jihwan Park & Xin Sheng & Amin Abedini & Hongbo Liu & Allison Vassalotti & Junnan Wu & Katalin Susztak, 2023. "Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Tiago C. Luis & Nikolaos Barkas & Joana Carrelha & Alice Giustacchini & Stefania Mazzi & Ruggiero Norfo & Bishan Wu & Affaf Aliouat & Jose A. Guerrero & Alba Rodriguez-Meira & Tiphaine Bouriez-Jones &, 2023. "Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Michael R. Kelly & Kamila Wisniewska & Matthew J. Regner & Michael W. Lewis & Andrea A. Perreault & Eric S. Davis & Douglas H. Phanstiel & Joel S. Parker & Hector L. Franco, 2022. "A multi-omic dissection of super-enhancer driven oncogenic gene expression programs in ovarian cancer," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    10. Zachary A. Hing & Janek S. Walker & Ethan C. Whipp & Lindsey Brinton & Matthew Cannon & Pu Zhang & Steven Sher & Casey B. Cempre & Fiona Brown & Porsha L. Smith & Claudio Agostinelli & Stefano A. Pile, 2023. "Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter’s transformation," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    11. Brian M. Schilder & Alan E. Murphy & Nathan G. Skene, 2024. "rworkflows: automating reproducible practices for the R community," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Charley Xia & Sarah J. Pickett & David C. M. Liewald & Alexander Weiss & Gavin Hudson & W. David Hill, 2023. "The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Jose V Die & Ransom L Baldwin & Lisa J Rowland & Robert Li & Sunghee Oh & Congjun Li & Erin E Connor & Maria-Jose Ranilla, 2017. "Selection of internal reference genes for normalization of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis in the rumen epithelium," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
    14. Maja Olecka & Alena Bömmel & Lena Best & Madlen Haase & Silke Foerste & Konstantin Riege & Thomas Dost & Stefano Flor & Otto W. Witte & Sören Franzenburg & Marco Groth & Björn Eyss & Christoph Kaleta , 2024. "Nonlinear DNA methylation trajectories in aging male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Claire Marchal & Nivedita Singh & Zachary Batz & Jayshree Advani & Catherine Jaeger & Ximena Corso-Díaz & Anand Swaroop, 2022. "High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Lucas A. Mavromatis & Daniel B. Rosoff & Andrew S. Bell & Jeesun Jung & Josephin Wagner & Falk W. Lohoff, 2023. "Multi-omic underpinnings of epigenetic aging and human longevity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Daniela Klaproth-Andrade & Johannes Hingerl & Yanik Bruns & Nicholas H. Smith & Jakob Träuble & Mathias Wilhelm & Julien Gagneur, 2024. "Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Ihab Ansari & Llorenç Solé-Boldo & Meshi Ridnik & Julian Gutekunst & Oliver Gilliam & Maria Korshko & Timur Liwinski & Birgit Jickeli & Noa Weinberg-Corem & Michal Shoshkes-Carmel & Eli Pikarsky & Era, 2023. "TET2 and TET3 loss disrupts small intestine differentiation and homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Grigorios Georgolopoulos & Nikoletta Psatha & Mineo Iwata & Andrew Nishida & Tannishtha Som & Minas Yiangou & John A. Stamatoyannopoulos & Jeff Vierstra, 2021. "Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    20. Maritere Uriostegui-Arcos & Steven T. Mick & Zhuo Shi & Rufuto Rahman & Ana Fiszbein, 2023. "Splicing activates transcription from weak promoters upstream of alternative exons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33093-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.