IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32071-z.html
   My bibliography  Save this article

Real-time precision opto-control of chemical processes in live cells

Author

Listed:
  • Matthew G. Clark

    (Purdue University)

  • Gil A. Gonzalez

    (Purdue University)

  • Yiyang Luo

    (Purdue University)

  • Jesus A. Aldana-Mendoza

    (Purdue University)

  • Mark S. Carlsen

    (Purdue University)

  • Gregory Eakins

    (Purdue University)

  • Mingji Dai

    (Purdue University
    Purdue Center for Cancer Research)

  • Chi Zhang

    (Purdue University
    Purdue Center for Cancer Research
    Purdue Institute of Inflammation, Immunology, and Infectious Disease)

Abstract

Precision control of molecular activities and chemical reactions in live cells is a long-sought capability by life scientists. No existing technology can probe molecular targets in cells and simultaneously control the activities of only these targets at high spatial precision. We develop a real-time precision opto-control (RPOC) technology that detects a chemical-specific optical response from molecular targets during laser scanning and uses the optical signal to couple a separate laser to only interact with these molecules without affecting other sample locations. We demonstrate precision control of molecular states of a photochromic molecule in different regions of the cells. We also synthesize a photoswitchable compound and use it with RPOC to achieve site-specific inhibition of microtubule polymerization and control of organelle dynamics in live cells. RPOC can automatically detect and control biomolecular activities and chemical processes in dynamic living samples with submicron spatial accuracy, fast response time, and high chemical specificity.

Suggested Citation

  • Matthew G. Clark & Gil A. Gonzalez & Yiyang Luo & Jesus A. Aldana-Mendoza & Mark S. Carlsen & Gregory Eakins & Mingji Dai & Chi Zhang, 2022. "Real-time precision opto-control of chemical processes in live cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32071-z
    DOI: 10.1038/s41467-022-32071-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32071-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32071-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianpeng Ao & Xiaofeng Fang & Xianchong Miao & Jiwei Ling & Hyunchul Kang & Sungnam Park & Changfeng Wu & Minbiao Ji, 2021. "Switchable stimulated Raman scattering microscopy with photochromic vibrational probes," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Antoine R. Adamantidis & Feng Zhang & Alexander M. Aravanis & Karl Deisseroth & Luis de Lecea, 2007. "Neural substrates of awakening probed with optogenetic control of hypocretin neurons," Nature, Nature, vol. 450(7168), pages 420-424, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuancheng Ren & Cai Zhang & Faguo Yue & Jinxiang Tang & Wei Zhang & Yue Zheng & Yuanyuan Fang & Na Wang & Zhenbo Song & Zehui Zhang & Xiaolong Zhang & Han Qin & Yaling Wang & Jianxia Xia & Chenggang , 2024. "A midbrain GABAergic circuit constrains wakefulness in a mouse model of stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Yueli Yang & Xueyang Bai & Fanghao Hu, 2024. "Photoswitchable polyynes for multiplexed stimulated Raman scattering microscopy with reversible light control," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Olivia Macovei, 2020. "Conceptual Delimitations related to the Philosophical Approaches on Synthetic Biology," Logos Universalitate Mentalitate Educatie Noutate - Sectiunea Filosofie si Stiinte umaniste/ Logos Universality Mentality Education Novelty - Section: Philosophy and Humanistic Sciences, Editura Lumen, Department of Economics, vol. 8(2), pages 83-104, December.
    4. Ya-Nan Zhao & Jian-Bo Jiang & Shi-Yuan Tao & Yang Zhang & Ze-Ka Chen & Wei-Min Qu & Zhi-Li Huang & Su-Rong Yang, 2022. "GABAergic neurons in the rostromedial tegmental nucleus are essential for rapid eye movement sleep suppression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Zhijie Liu & Wei Su & Jianpeng Ao & Min Wang & Qiuli Jiang & Jie He & Hua Gao & Shu Lei & Jinshan Nie & Xuefeng Yan & Xiaojing Guo & Pinghong Zhou & Hao Hu & Minbiao Ji, 2022. "Instant diagnosis of gastroscopic biopsy via deep-learned single-shot femtosecond stimulated Raman histology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Han-Tao Li & Paulius Viskaitis & Eva Bracey & Daria Peleg-Raibstein & Denis Burdakov, 2024. "Transient targeting of hypothalamic orexin neurons alleviates seizures in a mouse model of epilepsy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Kei Kimura & Yuji Nagai & Gaku Hatanaka & Yang Fang & Soshi Tanabe & Andi Zheng & Maki Fujiwara & Mayuko Nakano & Yukiko Hori & Ryosuke F. Takeuchi & Mikio Inagaki & Takafumi Minamimoto & Ichiro Fujit, 2023. "A mosaic adeno-associated virus vector as a versatile tool that exhibits high levels of transgene expression and neuron specificity in primate brain," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32071-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.