IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31322-3.html
   My bibliography  Save this article

Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites

Author

Listed:
  • Jianli Tao

    (Boston Children’s Hospital and Harvard Medical School)

  • Qi Wang

    (Boston Children’s Hospital and Harvard Medical School)

  • Carlos Mendez-Dorantes

    (Dana-Farber Cancer Institute)

  • Kathleen H. Burns

    (Dana-Farber Cancer Institute)

  • Roberto Chiarle

    (Boston Children’s Hospital and Harvard Medical School
    University of Torino)

Abstract

CRISPR/Cas9-based genome editing has revolutionized experimental molecular biology and entered the clinical world for targeted gene therapy. Identifying DNA modifications occurring at CRISPR/Cas9 target sites is critical to determine efficiency and safety of editing tools. Here we show that insertions of LINE-1 (L1) retrotransposons can occur frequently at CRISPR/Cas9 editing sites. Together with PolyA-seq and an improved amplicon sequencing, we characterize more than 2500 de novo L1 insertions at multiple CRISPR/Cas9 editing sites in HEK293T, HeLa and U2OS cells. These L1 retrotransposition events exploit CRISPR/Cas9-induced DSB formation and require L1 RT activity. Importantly, de novo L1 insertions are rare during genome editing by prime editors (PE), cytidine or adenine base editors (CBE or ABE), consistent with their reduced DSB formation. These data demonstrate that insertions of retrotransposons might be a potential outcome of CRISPR/Cas9 genome editing and provide further evidence on the safety of different CRISPR-based editing tools.

Suggested Citation

  • Jianli Tao & Qi Wang & Carlos Mendez-Dorantes & Kathleen H. Burns & Roberto Chiarle, 2022. "Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31322-3
    DOI: 10.1038/s41467-022-31322-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31322-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31322-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fatwa Adikusuma & Sandra Piltz & Mark A. Corbett & Michelle Turvey & Shaun R. McColl & Karla J. Helbig & Michael R. Beard & James Hughes & Richard T. Pomerantz & Paul Q. Thomas, 2018. "Large deletions induced by Cas9 cleavage," Nature, Nature, vol. 560(7717), pages 8-9, August.
    2. Stamatis Papathanasiou & Styliani Markoulaki & Logan J. Blaine & Mitchell L. Leibowitz & Cheng-Zhong Zhang & Rudolf Jaenisch & David Pellman, 2021. "Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    4. Man Liu & Jamie L. Duke & Daniel J. Richter & Carola G. Vinuesa & Christopher C. Goodnow & Steven H. Kleinstein & David G. Schatz, 2008. "Two levels of protection for the B cell genome during somatic hypermutation," Nature, Nature, vol. 451(7180), pages 841-845, February.
    5. Gregory A. Newby & Jonathan S. Yen & Kaitly J. Woodard & Thiyagaraj Mayuranathan & Cicera R. Lazzarotto & Yichao Li & Heather Sheppard-Tillman & Shaina N. Porter & Yu Yao & Kalin Mayberry & Kelcee A. , 2021. "Base editing of haematopoietic stem cells rescues sickle cell disease in mice," Nature, Nature, vol. 595(7866), pages 295-302, July.
    6. Sabine Klawitter & Nina V. Fuchs & Kyle R. Upton & Martin Muñoz-Lopez & Ruchi Shukla & Jichang Wang & Marta Garcia-Cañadas & Cesar Lopez-Ruiz & Daniel J. Gerhardt & Attila Sebe & Ivana Grabundzija & S, 2016. "Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells," Nature Communications, Nature, vol. 7(1), pages 1-14, April.
    7. Grégoire Cullot & Julian Boutin & Jérôme Toutain & Florence Prat & Perrine Pennamen & Caroline Rooryck & Martin Teichmann & Emilie Rousseau & Isabelle Lamrissi-Garcia & Véronique Guyonnet-Duperat & Al, 2019. "CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    8. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    9. Tammy A. Morrish & José Luis Garcia-Perez & Thomas D. Stamato & Guillermo E. Taccioli & JoAnn Sekiguchi & John V. Moran, 2007. "Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres," Nature, Nature, vol. 446(7132), pages 208-212, March.
    10. Killian S. Hanlon & Benjamin P. Kleinstiver & Sara P. Garcia & Mikołaj P. Zaborowski & Adrienn Volak & Stefan E. Spirig & Alissa Muller & Alexander A. Sousa & Shengdar Q. Tsai & Niclas E. Bengtsson & , 2019. "High levels of AAV vector integration into CRISPR-induced DNA breaks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Takayuki Yamada & Yuto Yoshinari & Masayuki Tobo & Okiko Habara & Takashi Nishimura, 2023. "Nacα protects the larval fat body from cell death by maintaining cellular proteostasis in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Maarten H. Geurts & Shashank Gandhi & Matteo G. Boretto & Ninouk Akkerman & Lucca L. M. Derks & Gijs Son & Martina Celotti & Sarina Harshuk-Shabso & Flavia Peci & Harry Begthel & Delilah Hendriks & Pa, 2023. "One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. G. Cullot & J. Boutin & S. Fayet & F. Prat & J. Rosier & D. Cappellen & I. Lamrissi & P. Pennamen & J. Bouron & S. Amintas & C. Thibault & I. Moranvillier & E. Laharanne & J. P. Merlio & V. Guyonnet-D, 2023. "Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR-Cas9," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Jianhang Yin & Kailun Fang & Yanxia Gao & Liqiong Ou & Shaopeng Yuan & Changchang Xin & Weiwei Wu & Wei-wei Wu & Jiaxu Hong & Hui Yang & Jiazhi Hu, 2022. "Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Jianhang Yin & Rusen Lu & Changchang Xin & Yuhong Wang & Xinyu Ling & Dong Li & Weiwei Zhang & Mengzhu Liu & Wutao Xie & Lingyun Kong & Wen Si & Ping Wei & Bingbing Xiao & Hsiang-Ying Lee & Tao Liu & , 2022. "Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. András Tálas & Dorottya A. Simon & Péter I. Kulcsár & Éva Varga & Sarah L. Krausz & Ervin Welker, 2021. "BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Lisa Maria Riedmayr & Klara Sonnie Hinrichsmeyer & Stefan Bernhard Thalhammer & David Manuel Mittas & Nina Karguth & Dina Yehia Otify & Sybille Böhm & Valentin Johannes Weber & Michael David Bartosche, 2023. "mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    11. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Emily Zhang & Monica E. Neugebauer & Nicholas A. Krasnow & David R. Liu, 2024. "Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Marion Rosello & Malo Serafini & Luca Mignani & Dario Finazzi & Carine Giovannangeli & Marina C. Mione & Jean-Paul Concordet & Filippo Del Bene, 2022. "Disease modeling by efficient genome editing using a near PAM-less base editor in vivo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. J. Ferreira da Silva & G. P. Oliveira & E. A. Arasa-Verge & C. Kagiou & A. Moretton & G. Timelthaler & J. Jiricny & J. I. Loizou, 2022. "Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Mu Li & Aaron Zhong & Youjun Wu & Mega Sidharta & Michael Beaury & Xiaolan Zhao & Lorenz Studer & Ting Zhou, 2022. "Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Dan Liang & Aleksei Mikhalchenko & Hong Ma & Nuria Marti Gutierrez & Tailai Chen & Yeonmi Lee & Sang-Wook Park & Rebecca Tippner-Hedges & Amy Koski & Hayley Darby & Ying Li & Crystal Dyken & Han Zhao , 2023. "Limitations of gene editing assessments in human preimplantation embryos," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Friedrich Fauser & Bhakti N. Kadam & Sebastian Arangundy-Franklin & Jessica E. Davis & Vishvesha Vaidya & Nicola J. Schmidt & Garrett Lew & Danny F. Xia & Rakshaa Mureli & Colman Ng & Yuanyue Zhou & N, 2024. "Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31322-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.