IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30743-4.html
   My bibliography  Save this article

Skyrmion pinning energetics in thin film systems

Author

Listed:
  • Raphael Gruber

    (Johannes Gutenberg-Universität Mainz)

  • Jakub Zázvorka

    (Faculty of Mathematics and Physics, Charles University)

  • Maarten A. Brems

    (Johannes Gutenberg-Universität Mainz)

  • Davi R. Rodrigues

    (Johannes Gutenberg-Universität Mainz
    Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari
    University of Duisburg-Essen)

  • Takaaki Dohi

    (Johannes Gutenberg-Universität Mainz)

  • Nico Kerber

    (Johannes Gutenberg-Universität Mainz)

  • Boris Seng

    (Johannes Gutenberg-Universität Mainz
    Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine)

  • Mehran Vafaee

    (Johannes Gutenberg-Universität Mainz
    Singulus Technologies AG)

  • Karin Everschor-Sitte

    (Johannes Gutenberg-Universität Mainz
    University of Duisburg-Essen
    University of Duisburg-Essen)

  • Peter Virnau

    (Johannes Gutenberg-Universität Mainz)

  • Mathias Kläui

    (Johannes Gutenberg-Universität Mainz)

Abstract

A key issue for skyrmion dynamics and devices are pinning effects present in real systems. While posing a challenge for the realization of conventional skyrmionics devices, exploiting pinning effects can enable non-conventional computing approaches if the details of the pinning in real samples are quantified and understood. We demonstrate that using thermal skyrmion dynamics, we can characterize the pinning of a sample and we ascertain the spatially resolved energy landscape. To understand the mechanism of the pinning, we probe the strong skyrmion size and shape dependence of the pinning. Magnetic microscopy imaging demonstrates that in contrast to findings in previous investigations, for large skyrmions the pinning originates at the skyrmion boundary and not at its core. The boundary pinning is strongly influenced by the very complex pinning energy landscape that goes beyond the conventional effective rigid quasi-particle description. This gives rise to complex skyrmion shape distortions and allows for dynamic switching of pinning sites and flexible tuning of the pinning.

Suggested Citation

  • Raphael Gruber & Jakub Zázvorka & Maarten A. Brems & Davi R. Rodrigues & Takaaki Dohi & Nico Kerber & Boris Seng & Mehran Vafaee & Karin Everschor-Sitte & Peter Virnau & Mathias Kläui, 2022. "Skyrmion pinning energetics in thin film systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30743-4
    DOI: 10.1038/s41467-022-30743-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30743-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30743-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hariom Jani & Jheng-Cyuan Lin & Jiahao Chen & Jack Harrison & Francesco Maccherozzi & Jonathon Schad & Saurav Prakash & Chang-Beom Eom & A. Ariando & T. Venkatesan & Paolo G. Radaelli, 2021. "Antiferromagnetic half-skyrmions and bimerons at room temperature," Nature, Nature, vol. 590(7844), pages 74-79, February.
    2. Katharina Zeissler & Simone Finizio & Craig Barton & Alexandra J. Huxtable & Jamie Massey & Jörg Raabe & Alexandr V. Sadovnikov & Sergey A. Nikitov & Richard Brearton & Thorsten Hesjedal & Gerrit Laan, 2020. "Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Ajaya K. Nayak & Vivek Kumar & Tianping Ma & Peter Werner & Eckhard Pippel & Roshnee Sahoo & Franoise Damay & Ulrich K. Rößler & Claudia Felser & Stuart S. P. Parkin, 2017. "Magnetic antiskyrmions above room temperature in tetragonal Heusler materials," Nature, Nature, vol. 548(7669), pages 561-566, August.
    4. Anthony K. C. Tan & Pin Ho & James Lourembam & Lisen Huang & Hang Khume Tan & Cynthia J. O. Reichhardt & Charles Reichhardt & Anjan Soumyanarayanan, 2021. "Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Takaaki Dohi & Samik DuttaGupta & Shunsuke Fukami & Hideo Ohno, 2019. "Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    6. Junichi Iwasaki & Masahito Mochizuki & Naoto Nagaosa, 2013. "Universal current-velocity relation of skyrmion motion in chiral magnets," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    7. A. Hrabec & J. Sampaio & M. Belmeguenai & I. Gross & R. Weil & S. M. Chérif & A. Stashkevich & V. Jacques & A. Thiaville & S. Rohart, 2017. "Current-induced skyrmion generation and dynamics in symmetric bilayers," Nature Communications, Nature, vol. 8(1), pages 1-6, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Peter Meisenheimer & Hongrui Zhang & David Raftrey & Xiang Chen & Yu-Tsun Shao & Ying-Ting Chan & Reed Yalisove & Rui Chen & Jie Yao & Mary C. Scott & Weida Wu & David A. Muller & Peter Fischer & Robe, 2023. "Ordering of room-temperature magnetic skyrmions in a polar van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roméo Juge & Naveen Sisodia & Joseba Urrestarazu Larrañaga & Qiang Zhang & Van Tuong Pham & Kumari Gaurav Rana & Brice Sarpi & Nicolas Mille & Stefan Stanescu & Rachid Belkhou & Mohamad-Assaad Mawass , 2022. "Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Mona Bhukta & Takaaki Dohi & Venkata Krishna Bharadwaj & Ricardo Zarzuela & Maria-Andromachi Syskaki & Michael Foerster & Miguel Angel Niño & Jairo Sinova & Robert Frömter & Mathias Kläui, 2024. "Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Sheng Yang & Yuelei Zhao & Kai Wu & Zhiqin Chu & Xiaohong Xu & Xiaoguang Li & Johan Åkerman & Yan Zhou, 2023. "Reversible conversion between skyrmions and skyrmioniums," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Weiwei Wang & Dongsheng Song & Wensen Wei & Pengfei Nan & Shilei Zhang & Binghui Ge & Mingliang Tian & Jiadong Zang & Haifeng Du, 2022. "Electrical manipulation of skyrmions in a chiral magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    7. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Ruyi Chen & Chong Chen & Lei Han & Peisen Liu & Rongxuan Su & Wenxuan Zhu & Yongjian Zhou & Feng Pan & Cheng Song, 2023. "Ordered creation and motion of skyrmions with surface acoustic wave," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Fehmi Sami Yasin & Jan Masell & Kosuke Karube & Daisuke Shindo & Yasujiro Taguchi & Yoshinori Tokura & Xiuzhen Yu, 2023. "Heat current-driven topological spin texture transformations and helical q-vector switching," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Amal Aldarawsheh & Imara Lima Fernandes & Sascha Brinker & Moritz Sallermann & Muayad Abusaa & Stefan Blügel & Samir Lounis, 2022. "Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Jagannath Jena & Börge Göbel & Tomoki Hirosawa & Sebastián A. Díaz & Daniel Wolf & Taichi Hinokihara & Vivek Kumar & Ingrid Mertig & Claudia Felser & Axel Lubk & Daniel Loss & Stuart S. P. Parkin, 2022. "Observation of fractional spin textures in a Heusler material," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. C. J. O. Reichhardt & C. Reichhardt, 2022. "Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-16, August.
    13. C. K. Safeer & Mohamed-Ali Nsibi & Jayshankar Nath & Mihai Sebastian Gabor & Haozhe Yang & Isabelle Joumard & Stephane Auffret & Gilles Gaudin & Ioan-Mihai Miron, 2022. "Effect of Chiral Damping on the dynamics of chiral domain walls and skyrmions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Anthony K. C. Tan & Pin Ho & James Lourembam & Lisen Huang & Hang Khume Tan & Cynthia J. O. Reichhardt & Charles Reichhardt & Anjan Soumyanarayanan, 2021. "Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Rina Takagi & Naofumi Matsuyama & Victor Ukleev & Le Yu & Jonathan S. White & Sonia Francoual & José R. L. Mardegan & Satoru Hayami & Hiraku Saito & Koji Kaneko & Kazuki Ohishi & Yoshichika Ōnuki & Ta, 2022. "Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Licong Peng & Kosuke Karube & Yasujiro Taguchi & Naoto Nagaosa & Yoshinori Tokura & Xiuzhen Yu, 2021. "Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    17. Zijing Zhao & Zhi Fang & Xiaocang Han & Shiqi Yang & Cong Zhou & Yi Zeng & Biao Zhang & Wei Li & Zhan Wang & Ying Zhang & Jian Zhou & Jiadong Zhou & Yu Ye & Xinmei Hou & Xiaoxu Zhao & Song Gao & Yangl, 2023. "A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30743-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.