IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30685-x.html
   My bibliography  Save this article

A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors

Author

Listed:
  • Dorothy Koveal

    (Harvard Medical School)

  • Paul C. Rosen

    (Harvard Medical School
    Massachusetts Institute of Technology)

  • Dylan J. Meyer

    (Harvard Medical School)

  • Carlos Manlio Díaz-García

    (Harvard Medical School
    University of Oklahoma Health Sciences Center)

  • Yongcheng Wang

    (Harvard University
    Zhejiang University Medical Center)

  • Li-Heng Cai

    (Harvard University
    University of Virginia)

  • Peter J. Chou

    (Harvard Medical School
    Stanford University School of Medicine)

  • David A. Weitz

    (Harvard University)

  • Gary Yellen

    (Harvard Medical School)

Abstract

Genetically encoded fluorescent biosensors are powerful tools used to track chemical processes in intact biological systems. However, the development and optimization of biosensors remains a challenging and labor-intensive process, primarily due to technical limitations of methods for screening candidate biosensors. Here we describe a screening modality that combines droplet microfluidics and automated fluorescence imaging to provide an order of magnitude increase in screening throughput. Moreover, unlike current techniques that are limited to screening for a single biosensor feature at a time (e.g. brightness), our method enables evaluation of multiple features (e.g. contrast, affinity, specificity) in parallel. Because biosensor features can covary, this capability is essential for rapid optimization. We use this system to generate a high-performance biosensor for lactate that can be used to quantify intracellular lactate concentrations. This biosensor, named LiLac, constitutes a significant advance in metabolite sensing and demonstrates the power of our screening approach.

Suggested Citation

  • Dorothy Koveal & Paul C. Rosen & Dylan J. Meyer & Carlos Manlio Díaz-García & Yongcheng Wang & Li-Heng Cai & Peter J. Chou & David A. Weitz & Gary Yellen, 2022. "A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30685-x
    DOI: 10.1038/s41467-022-30685-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30685-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30685-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Franka H. Linden & Eike K. Mahlandt & Janine J. G. Arts & Joep Beumer & Jens Puschhof & Saskia M. A. Man & Anna O. Chertkova & Bas Ponsioen & Hans Clevers & Jaap D. Buul & Marten Postma & Theodorus W., 2021. "A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Mark A. Lobas & Rongkun Tao & Jun Nagai & Mira T. Kronschläger & Philip M. Borden & Jonathan S. Marvin & Loren L. Looger & Baljit S. Khakh, 2019. "A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    3. Joachim Goedhart & David von Stetten & Marjolaine Noirclerc-Savoye & Mickaël Lelimousin & Linda Joosen & Mark A. Hink & Laura van Weeren & Theodorus W.J. Gadella & Antoine Royant, 2012. "Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    4. Sheng Hui & Jonathan M. Ghergurovich & Raphael J. Morscher & Cholsoon Jang & Xin Teng & Wenyun Lu & Lourdes A. Esparza & Tannishtha Reya & Le Zhan & Jessie Yanxiang Guo & Eileen White & Joshua D. Rabi, 2017. "Glucose feeds the TCA cycle via circulating lactate," Nature, Nature, vol. 551(7678), pages 115-118, November.
    5. Dana C. Nadler & Stacy-Anne Morgan & Avi Flamholz & Kaitlyn E. Kortright & David F. Savage, 2016. "Rapid construction of metabolite biosensors using domain-insertion profiling," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong Guo & Oleh Smutok & Wayne A. Johnston & Patricia Walden & Jacobus P. J. Ungerer & Thomas S. Peat & Janet Newman & Jake Parker & Tom Nebl & Caryn Hepburn & Artem Melman & Richard J. Suderman & Ev, 2021. "Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Jin Wang & Ning Xue & Wenjia Pan & Ran Tu & Shixin Li & Yue Zhang & Yufeng Mao & Ye Liu & Haijiao Cheng & Yanmei Guo & Wei Yuan & Xiaomeng Ni & Meng Wang, 2023. "Repurposing conformational changes in ANL superfamily enzymes to rapidly generate biosensors for organic and amino acids," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Michael B. Sheets & Nathan Tague & Mary J. Dunlop, 2023. "An optogenetic toolkit for light-inducible antibiotic resistance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Danielle L. Schmitt & Stephanie D. Curtis & Anne C. Lyons & Jin-fan Zhang & Mingyuan Chen & Catherine Y. He & Sohum Mehta & Reuben J. Shaw & Jin Zhang, 2022. "Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Charlotte M. François & Thomas Pihl & Marion Dunoyer de Segonzac & Chloé Hérault & Bruno Hudry, 2023. "Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Liyuan Zhu & Harold M. McNamara & Jared E. Toettcher, 2023. "Light-switchable transcription factors obtained by direct screening in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Ali Vaziri-Gohar & Jonathan J. Hue & Ata Abbas & Hallie J. Graor & Omid Hajihassani & Mehrdad Zarei & George Titomihelakis & John Feczko & Moeez Rathore & Sylwia Chelstowska & Alexander W. Loftus & Ru, 2023. "Increased glucose availability sensitizes pancreatic cancer to chemotherapy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Shannon Trombley & Jackson Powell & Pavithran Guttipatti & Andrew Matamoros & Xiaohui Lin & Tristan O’Harrow & Tobias Steinschaden & Leann Miles & Qin Wang & Shuchao Wang & Jingyun Qiu & Qingyang Li &, 2023. "Glia instruct axon regeneration via a ternary modulation of neuronal calcium channels in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Kirsty J Martin & Ewan J McGhee & Juliana P Schwarz & Martin Drysdale & Saskia M Brachmann & Volker Stucke & Owen J Sansom & Kurt I Anderson, 2018. "Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-25, January.
    10. Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Anna Rubinski & Noam E Ziv, 2015. "Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-29, November.
    12. Xueman Chen & Rong Luo & Yunmei Zhang & Shuying Ye & Xin Zeng & Jiang Liu & Di Huang & Yujie Liu & Qiang Liu & Man-Li Luo & Erwei Song, 2022. "Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Guihong Lu & Xiaojun Wang & Feng Li & Shuang Wang & Jiawei Zhao & Jinyi Wang & Jing Liu & Chengliang Lyu & Peng Ye & Hui Tan & Weiping Li & Guanghui Ma & Wei Wei, 2022. "Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Katia Monsorno & Kyllian Ginggen & Andranik Ivanov & An Buckinx & Arnaud L. Lalive & Anna Tchenio & Sam Benson & Marc Vendrell & Angelo D’Alessandro & Dieter Beule & Luc Pellerin & Manuel Mameli & Ros, 2023. "Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Qiang Feng & Zhida Liu & Xuexin Yu & Tongyi Huang & Jiahui Chen & Jian Wang & Jonathan Wilhelm & Suxin Li & Jiwon Song & Wei Li & Zhichen Sun & Baran D. Sumer & Bo Li & Yang-Xin Fu & Jinming Gao, 2022. "Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Ariel A. Valiente-Gabioud & Inés Garteizgogeascoa Suñer & Agata Idziak & Arne Fabritius & Jérome Basquin & Julie Angibaud & U. Valentin Nägerl & Sumeet Pal Singh & Oliver Griesbeck, 2023. "Fluorescent sensors for imaging of interstitial calcium," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Stephanie Trauth & Ilka B Bischofs, 2014. "Ectopic Integration Vectors for Generating Fluorescent Promoter Fusions in Bacillus subtilis with Minimal Dark Noise," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-9, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30685-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.