IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30497-z.html
   My bibliography  Save this article

Versatile strategy for homogeneous drying patterns of dispersed particles

Author

Listed:
  • Marcel Rey

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    The University of Edinburgh)

  • Johannes Walter

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Johannes Harrer

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Carmen Morcillo Perez

    (The University of Edinburgh)

  • Salvatore Chiera

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Sharanya Nair

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Maret Ickler

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Alesa Fuchs

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Mark Michaud

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Maximilian J. Uttinger

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Andrew B. Schofield

    (The University of Edinburgh)

  • Job H. J. Thijssen

    (The University of Edinburgh)

  • Monica Distaso

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Wolfgang Peukert

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

  • Nicolas Vogel

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
    Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU))

Abstract

After spilling coffee, a tell-tale stain is left by the drying droplet. This universal phenomenon, known as the coffee ring effect, is observed independent of the dispersed material. However, for many technological processes such as coating techniques and ink-jet printing a uniform particle deposition is required and the coffee ring effect is a major drawback. Here, we present a simple and versatile strategy to achieve homogeneous drying patterns using surface-modified particle dispersions. High-molecular weight surface-active polymers that physisorb onto the particle surfaces provide enhanced steric stabilization and prevent accumulation and pinning at the droplet edge. In addition, in the absence of free polymer in the dispersion, the surface modification strongly enhances the particle adsorption to the air/liquid interface, where they experience a thermal Marangoni backflow towards the apex of the drop, leading to uniform particle deposition after drying. The method is independent of particle shape and applicable to a variety of commercial pigment particles and different dispersion media, demonstrating the practicality of this work for everyday processes.

Suggested Citation

  • Marcel Rey & Johannes Walter & Johannes Harrer & Carmen Morcillo Perez & Salvatore Chiera & Sharanya Nair & Maret Ickler & Alesa Fuchs & Mark Michaud & Maximilian J. Uttinger & Andrew B. Schofield & J, 2022. "Versatile strategy for homogeneous drying patterns of dispersed particles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30497-z
    DOI: 10.1038/s41467-022-30497-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30497-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30497-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Randy P. Carney & Jin Young Kim & Huifeng Qian & Rongchao Jin & Hakim Mehenni & Francesco Stellacci & Osman M. Bakr, 2011. "Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    2. Wouter Sempels & Raf De Dier & Hideaki Mizuno & Johan Hofkens & Jan Vermant, 2013. "Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    3. Peter J. Yunker & Tim Still & Matthew A. Lohr & A. G. Yodh, 2011. "Suppression of the coffee-ring effect by shape-dependent capillary interactions," Nature, Nature, vol. 476(7360), pages 308-311, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Zargartalebi & S. Hossein Hejazi & Amir Sanati-Nezhad, 2022. "Self-assembly of highly ordered micro- and nanoparticle deposits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Xiaodong Zhang & Yugang Zhao & Dongmin Wang, 2023. "Characterization of the Temperature Profile near Contact Lines of an Evaporating Sessile Drop," Energies, MDPI, vol. 16(6), pages 1-12, March.
    4. Anik Karan & Margarita Darder & Urna Kansakar & Zach Norcross & Mark A. DeCoster, 2018. "Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent Degradation and Biomedical Control," IJERPH, MDPI, vol. 15(5), pages 1-12, April.
    5. Liang Dong & Yun-Jun Xu & Cong Sui & Yang Zhao & Li-Bo Mao & Denis Gebauer & Rose Rosenberg & Jonathan Avaro & Ya-Dong Wu & Huai-Ling Gao & Zhao Pan & Hui-Qin Wen & Xu Yan & Fei Li & Yang Lu & Helmut , 2022. "Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as an MRI contrast agent," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30497-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.